Preparation of Cellulose-Grafted Acrylic Acid Stabilized Jujube Branch Biochar-Supported Nano Zero-Valent Iron Composite for Cr(VI) Removal from Water.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-03-14 DOI:10.3390/nano15060441
Xiaoxue Wang, Zhe Tan, Shuang Shi, Shanyuan Zhang, Shuang Yang, Xingyu Zhang, Pingqiang Gao, Yan Zhang
{"title":"Preparation of Cellulose-Grafted Acrylic Acid Stabilized Jujube Branch Biochar-Supported Nano Zero-Valent Iron Composite for Cr(VI) Removal from Water.","authors":"Xiaoxue Wang, Zhe Tan, Shuang Shi, Shanyuan Zhang, Shuang Yang, Xingyu Zhang, Pingqiang Gao, Yan Zhang","doi":"10.3390/nano15060441","DOIUrl":null,"url":null,"abstract":"<p><p>A stabilized biochar (BC)-nano-scale zero-valent iron (nZVI) composite (BC-nZVI@Cell-g-PAA) was prepared using cellulose-grafted polyacrylic acid (Cell-g-PAA) as the raw material through in situ polymerization and liquid-phase reduction methods for the remediation of hexavalent chromium (Cr(VI))-contaminated water. BC-nZVI@Cell-g-PAA was characterized by XRD, FT-IR, SEM, BET, TEM, and XPS. According to the batch experiments, under optimized conditions (Cr(VI) concentration of 50 mg/L, pH = 3, and dosage of 2 g/L), the BC-nZVI@Cell-g-PAA composite achieved maximum Cr(VI) removal efficiency (99.69%) within 120 min. Notably, BC, as a carrier, achieved a high dispersion of nZVI through its porous structure, effectively preventing particle agglomeration and improving reaction activity. Simultaneously, the functional groups on the surface of Cell-g-PAA provided excellent protection for nZVI, significantly suppressing its oxidative deactivation. Furthermore, the composite effectively reduced Cr(VI) to insoluble trivalent chromium(Cr(III)) species and stabilized them on its surface through immobilization. The synergistic effects of physical adsorption and chemical reduction greatly contributed to the removal efficiency of Cr(VI). Remarkably, the composite exhibited excellent reusability with a removal efficiency of 62.4% after five cycles, demonstrating its potential as a promising material for remediating Cr(VI)-contaminated water. In conclusion, the BC-nZVI@Cell-g-PAA composite not only demonstrated remarkable efficiency in Cr(VI) removal but also showcased its potential for practical applications in environmental remediation, as evidenced by its sustained performance over multiple reuse cycles. Moreover, Cr(VI), a toxic and carcinogenic substance, poses significant risks to aquatic ecosystems and human health, underscoring the importance of developing effective methods for its removal from contaminated water.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060441","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A stabilized biochar (BC)-nano-scale zero-valent iron (nZVI) composite (BC-nZVI@Cell-g-PAA) was prepared using cellulose-grafted polyacrylic acid (Cell-g-PAA) as the raw material through in situ polymerization and liquid-phase reduction methods for the remediation of hexavalent chromium (Cr(VI))-contaminated water. BC-nZVI@Cell-g-PAA was characterized by XRD, FT-IR, SEM, BET, TEM, and XPS. According to the batch experiments, under optimized conditions (Cr(VI) concentration of 50 mg/L, pH = 3, and dosage of 2 g/L), the BC-nZVI@Cell-g-PAA composite achieved maximum Cr(VI) removal efficiency (99.69%) within 120 min. Notably, BC, as a carrier, achieved a high dispersion of nZVI through its porous structure, effectively preventing particle agglomeration and improving reaction activity. Simultaneously, the functional groups on the surface of Cell-g-PAA provided excellent protection for nZVI, significantly suppressing its oxidative deactivation. Furthermore, the composite effectively reduced Cr(VI) to insoluble trivalent chromium(Cr(III)) species and stabilized them on its surface through immobilization. The synergistic effects of physical adsorption and chemical reduction greatly contributed to the removal efficiency of Cr(VI). Remarkably, the composite exhibited excellent reusability with a removal efficiency of 62.4% after five cycles, demonstrating its potential as a promising material for remediating Cr(VI)-contaminated water. In conclusion, the BC-nZVI@Cell-g-PAA composite not only demonstrated remarkable efficiency in Cr(VI) removal but also showcased its potential for practical applications in environmental remediation, as evidenced by its sustained performance over multiple reuse cycles. Moreover, Cr(VI), a toxic and carcinogenic substance, poses significant risks to aquatic ecosystems and human health, underscoring the importance of developing effective methods for its removal from contaminated water.

以纤维素接枝聚丙烯酸(Cell-g-PAA)为原料,通过原位聚合和液相还原法制备了一种稳定生物炭(BC)-纳米级零价铁(nZVI)复合材料(BC-nZVI@Cell-g-PAA),用于六价铬(Cr(VI))污染水体的修复。对 BC-nZVI@Cell-g-PAA 进行了 XRD、FT-IR、SEM、BET、TEM 和 XPS 表征。批次实验结果表明,在优化条件下(六价铬浓度为 50 mg/L、pH = 3、投加量为 2 g/L),BC-nZVI@Cell-g-PAA 复合材料在 120 分钟内实现了最高的六价铬去除率(99.69%)。值得注意的是,作为载体的 BC 通过其多孔结构实现了 nZVI 的高度分散,有效防止了颗粒团聚,提高了反应活性。同时,Cell-g-PAA 表面的官能团为 nZVI 提供了良好的保护,显著抑制了其氧化失活。此外,该复合材料还能有效地将 Cr(VI) 还原成不溶性的三价铬(Cr(III) ),并通过固定作用将其稳定在表面。物理吸附和化学还原的协同作用大大提高了六价铬的去除效率。值得注意的是,该复合材料具有极佳的重复利用率,经过五个循环后的去除率达到 62.4%,这表明它有望成为一种用于修复受六价铬污染的水体的材料。总之,BC-nZVI@Cell-g-PAA 复合材料不仅在去除六价铬方面表现出显著的效率,而且在多个重复使用周期中的持续表现也证明了它在环境修复方面的实际应用潜力。此外,六价铬是一种有毒的致癌物质,对水生生态系统和人类健康构成重大风险,因此开发有效的方法从受污染的水中去除六价铬非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信