Yanming Sun, Yanchen Huang, Xiaoying Lu, Hao Song, Guoping Wang
{"title":"Preparation and Application of Hydrophobic and Breathable Carbon Nanocoils/Thermoplastic Polyurethane Flexible Strain Sensors.","authors":"Yanming Sun, Yanchen Huang, Xiaoying Lu, Hao Song, Guoping Wang","doi":"10.3390/nano15060457","DOIUrl":null,"url":null,"abstract":"<p><p>The emphasis on physical activity and health monitoring has increased the demand for developing multifunctional, flexible sensors through straightforward methods. A hydrophobic, breathable, and flexible strain sensor was prepared using a filtration method, employing thermoplastic polyurethane (TPU) as a substrate, carbon nanocoils (CNCs) as conductive fillers, and polydimethylsiloxane (PDMS) as a binder. The sensing layer, prepared using the unique three-dimensional helical structure of carbon nanocoils, achieved a hydrophobic angle of 143° and rapidly changed the color of the pH test paper in 5 s. The sensor had a strain range of 40% and a gauge factor of 34, and achieved a linear fit of R<sup>2</sup> = 0.98 in the 5-35% strain range. The CNCs/TPU sensor exhibits high reliability and stability after 1000 tensile cycle tests. These favorable features ensure that the sensors are comfortable to wear and respond quickly and accurately to movements in all body parts, meeting the need for human motion detection.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060457","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The emphasis on physical activity and health monitoring has increased the demand for developing multifunctional, flexible sensors through straightforward methods. A hydrophobic, breathable, and flexible strain sensor was prepared using a filtration method, employing thermoplastic polyurethane (TPU) as a substrate, carbon nanocoils (CNCs) as conductive fillers, and polydimethylsiloxane (PDMS) as a binder. The sensing layer, prepared using the unique three-dimensional helical structure of carbon nanocoils, achieved a hydrophobic angle of 143° and rapidly changed the color of the pH test paper in 5 s. The sensor had a strain range of 40% and a gauge factor of 34, and achieved a linear fit of R2 = 0.98 in the 5-35% strain range. The CNCs/TPU sensor exhibits high reliability and stability after 1000 tensile cycle tests. These favorable features ensure that the sensors are comfortable to wear and respond quickly and accurately to movements in all body parts, meeting the need for human motion detection.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.