{"title":"Rhodotorula sp. as a promising host for microbial cell factories","authors":"Baisong Tong, Yi Yu, Shuobo Shi","doi":"10.1016/j.ymben.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div><em>Rhodotorula</em> sp. is a red yeast that has emerged as a promising host for microbial cell factories. Under specific conditions, <em>Rhodotorula</em> sp. can accumulate lipids that constitute over 70% of its dry cell weight, underscoring its potential in lipid compound production. Additionally, it can utilize a variety of carbon sources, including glucose, xylose, and volatile fatty acids, and exhibits high tolerance to low-cost carbon sources and industrial by-products, showcasing its excellent performance in industrial processes. Furthermore, the native mevalonate pathway of <em>Rhodotorula</em> sp. enables its efficient synthesis of antioxidant carotenoids and other terpenoids, which are widely applied in the food, pharmaceutical, and cosmetic industries. Due to its excellent accumulation ability of lipophilic compounds, metabolic diversity, and environmental adaptability, this review summarizes recent advances in genetic elements and metabolic engineering technologies for <em>Rhodotorula</em> sp., emphasizing its potential as a chassis cell factory for the production of lipids, carotenoids, and other chemicals. It also highlights key factors influencing commercial fermentation processes and concludes with challenges and solutions for further developing <em>Rhodotorula</em> sp. as microbial chassis.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"90 ","pages":"Pages 178-196"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000515","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rhodotorula sp. is a red yeast that has emerged as a promising host for microbial cell factories. Under specific conditions, Rhodotorula sp. can accumulate lipids that constitute over 70% of its dry cell weight, underscoring its potential in lipid compound production. Additionally, it can utilize a variety of carbon sources, including glucose, xylose, and volatile fatty acids, and exhibits high tolerance to low-cost carbon sources and industrial by-products, showcasing its excellent performance in industrial processes. Furthermore, the native mevalonate pathway of Rhodotorula sp. enables its efficient synthesis of antioxidant carotenoids and other terpenoids, which are widely applied in the food, pharmaceutical, and cosmetic industries. Due to its excellent accumulation ability of lipophilic compounds, metabolic diversity, and environmental adaptability, this review summarizes recent advances in genetic elements and metabolic engineering technologies for Rhodotorula sp., emphasizing its potential as a chassis cell factory for the production of lipids, carotenoids, and other chemicals. It also highlights key factors influencing commercial fermentation processes and concludes with challenges and solutions for further developing Rhodotorula sp. as microbial chassis.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.