The unconventional TPX2 family protein TPXL3 regulates α Aurora kinase function in spindle morphogenesis in Arabidopsis.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Cell Pub Date : 2025-04-02 DOI:10.1093/plcell/koaf065
Xingguang Deng, Takumi Higaki, Hong-Hui Lin, Yuh-Ru Julie Lee, Bo Liu
{"title":"The unconventional TPX2 family protein TPXL3 regulates α Aurora kinase function in spindle morphogenesis in Arabidopsis.","authors":"Xingguang Deng, Takumi Higaki, Hong-Hui Lin, Yuh-Ru Julie Lee, Bo Liu","doi":"10.1093/plcell/koaf065","DOIUrl":null,"url":null,"abstract":"<p><p>Spindle assembly in vertebrates requires the Aurora kinase, which is targeted to microtubules and activated by TPX2 (Targeting Protein of XKLP2). In Arabidopsis (Arabidopsis thaliana), TPX2-LIKE 3 (TPXL3), but not the highly conserved TPX2, is essential. To test the hypothesis that TPXL3 regulates the function of α Aurora kinase in spindle assembly, we generated transgenic Arabidopsis lines expressing an artificial microRNA targeting TPXL3 mRNA (amiR-TPXL3). The resulting mutants exhibited growth retardation, which was linked to compromised TPXL3 expression. In the mutant cells, α Aurora was delocalized from spindle microtubules to the cytoplasm, and spindles were assembled without recognizable poles. A functional TPXL3-GFP fusion protein first prominently appeared on the prophase nuclear envelope. Then, TPXL3-GFP localized to spindle microtubules (primarily toward the spindle poles, like γ-tubulin), and finally to the re-forming nuclear envelope during telophase and cytokinesis. However, TPXL3 was absent from phragmoplast microtubules. In addition, we found that the TPXL3 N-terminal Aurora-binding motif, microtubule-binding domain, and importin-binding motif, but not the C-terminal segment, were required for its mitotic function. Expression of truncated TPXL3 variants enhanced the defects in spindle assembly and seedling growth of amiR-TPXL3 plants. Taken together, our findings uncovered the essential function of TPXL3, but not TPX2, in targeting and activating α Aurora kinase for spindle apparatus assembly in Arabidopsis.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf065","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spindle assembly in vertebrates requires the Aurora kinase, which is targeted to microtubules and activated by TPX2 (Targeting Protein of XKLP2). In Arabidopsis (Arabidopsis thaliana), TPX2-LIKE 3 (TPXL3), but not the highly conserved TPX2, is essential. To test the hypothesis that TPXL3 regulates the function of α Aurora kinase in spindle assembly, we generated transgenic Arabidopsis lines expressing an artificial microRNA targeting TPXL3 mRNA (amiR-TPXL3). The resulting mutants exhibited growth retardation, which was linked to compromised TPXL3 expression. In the mutant cells, α Aurora was delocalized from spindle microtubules to the cytoplasm, and spindles were assembled without recognizable poles. A functional TPXL3-GFP fusion protein first prominently appeared on the prophase nuclear envelope. Then, TPXL3-GFP localized to spindle microtubules (primarily toward the spindle poles, like γ-tubulin), and finally to the re-forming nuclear envelope during telophase and cytokinesis. However, TPXL3 was absent from phragmoplast microtubules. In addition, we found that the TPXL3 N-terminal Aurora-binding motif, microtubule-binding domain, and importin-binding motif, but not the C-terminal segment, were required for its mitotic function. Expression of truncated TPXL3 variants enhanced the defects in spindle assembly and seedling growth of amiR-TPXL3 plants. Taken together, our findings uncovered the essential function of TPXL3, but not TPX2, in targeting and activating α Aurora kinase for spindle apparatus assembly in Arabidopsis.

非传统的TPX2家族蛋白TPXL3调节α极光激酶在拟南芥纺锤体形态发生中的功能。
脊椎动物的纺锤体组装需要Aurora激酶,该激酶以微管为靶点,由TPX2 (XKLP2靶向蛋白)激活。在拟南芥(Arabidopsis thaliana)中,TPX2- like 3 (TPXL3)是必不可少的,而不是高度保守的TPX2。为了验证TPXL3调控α极光激酶在纺锤体组装中的功能,我们构建了转基因拟南芥系,表达了一种靶向TPXL3 mRNA的人工microRNA (amiR-TPXL3)。由此产生的突变体表现出生长迟缓,这与TPXL3表达受损有关。在突变体细胞中,α Aurora从纺锤体微管转移到细胞质中,纺锤体的组装没有可识别的极点。一个功能性TPXL3-GFP融合蛋白首先出现在前期核膜上。然后,TPXL3-GFP定位于纺锤体微管(主要指向纺锤体极点,如γ-微管蛋白),最后定位于末期和细胞质分裂期间重新形成的核膜。然而,在膜质体微管中不存在TPXL3。此外,我们发现TPXL3 n端极光结合基序、微管结合结构域和进口蛋白结合基序是其有丝分裂功能所必需的,而不是c端片段。截断TPXL3突变体的表达增强了amiR-TPXL3植株纺锤装配缺陷和幼苗生长缺陷。综上所述,我们的研究结果揭示了TPXL3而不是TPX2在拟南芥纺锤体组装中靶向和激活α极光激酶的基本功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信