Hei Wong, Jieqiong Zhang, Jun Liu, Muhammad Abid Anwar
{"title":"On the Current Conduction and Interface Passivation of Graphene-Insulator-Silicon Solar Cells.","authors":"Hei Wong, Jieqiong Zhang, Jun Liu, Muhammad Abid Anwar","doi":"10.3390/nano15060416","DOIUrl":null,"url":null,"abstract":"<p><p>Interface-passivated graphene/silicon Schottky junction solar cells have demonstrated promising features with improved stability and power conversion efficiency (PCE). However, there are some misunderstandings in the literature regarding some of the working mechanisms and the impacts of the silicon/insulator interface. Specifically, attributing performance improvement to oxygen vacancies and characterizing performance using Schottky barrier height and ideality factor might not be the most accurate or appropriate. This work uses Al<sub>2</sub>O<sub>3</sub> as an example to provide a detailed discussion on the interface ALD growth of Al<sub>2</sub>O<sub>3</sub> on silicon and its impact on graphene electrode metal-insulator-semiconductor (MIS) solar cells. We further suggest that the current conduction in MIS solar cells with an insulating layer of 2 to 3 nm thickness is better described by direct tunneling, Poole-Frenkel emission, and Fowler-Nordheim tunneling, as the junction voltage sweeps from negative to a larger forward bias. The dielectric film thickness, its band offset with Si, and the interface roughness, are key factors to consider for process optimization.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060416","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interface-passivated graphene/silicon Schottky junction solar cells have demonstrated promising features with improved stability and power conversion efficiency (PCE). However, there are some misunderstandings in the literature regarding some of the working mechanisms and the impacts of the silicon/insulator interface. Specifically, attributing performance improvement to oxygen vacancies and characterizing performance using Schottky barrier height and ideality factor might not be the most accurate or appropriate. This work uses Al2O3 as an example to provide a detailed discussion on the interface ALD growth of Al2O3 on silicon and its impact on graphene electrode metal-insulator-semiconductor (MIS) solar cells. We further suggest that the current conduction in MIS solar cells with an insulating layer of 2 to 3 nm thickness is better described by direct tunneling, Poole-Frenkel emission, and Fowler-Nordheim tunneling, as the junction voltage sweeps from negative to a larger forward bias. The dielectric film thickness, its band offset with Si, and the interface roughness, are key factors to consider for process optimization.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.