Spiral folding of a flexible chain of chiral active particles.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Shalabh K Anand
{"title":"Spiral folding of a flexible chain of chiral active particles.","authors":"Shalabh K Anand","doi":"10.1088/1361-648X/adc5c1","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate a flexible polymer chain made up of chiral active Brownian particles in two dimensions using computer simulations. In the presence of chiral active Brownian forces, the radius of gyration of the chain reduces significantly. We further identify the formation of spirals using the tangent-tangent correlation to characterize the internal structure of the chain. The polymer chain forms a pair of spirals with opposite spiral turns on both ends of the polymer. We compute the number of turns of both spirals, and find that the total number of turns increases with angular frequency as well as P{'e}clet number. However, the spirals become weak and the number of turns decreases at a very high P{'e}clet number. We draw a phase diagram using the turn number. The end-to-end correlation displays oscillatory behavior, which signifies the rotational dynamics of the chain. We quantify the rotation frequency from the end-to-end vector, which follows a power law behavior with exponent $3/2$. We also provide a scaling relation between the radius of gyration and the chain length, and the exponent decreases significantly in the presence of chiral active forces.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc5c1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a flexible polymer chain made up of chiral active Brownian particles in two dimensions using computer simulations. In the presence of chiral active Brownian forces, the radius of gyration of the chain reduces significantly. We further identify the formation of spirals using the tangent-tangent correlation to characterize the internal structure of the chain. The polymer chain forms a pair of spirals with opposite spiral turns on both ends of the polymer. We compute the number of turns of both spirals, and find that the total number of turns increases with angular frequency as well as P{'e}clet number. However, the spirals become weak and the number of turns decreases at a very high P{'e}clet number. We draw a phase diagram using the turn number. The end-to-end correlation displays oscillatory behavior, which signifies the rotational dynamics of the chain. We quantify the rotation frequency from the end-to-end vector, which follows a power law behavior with exponent $3/2$. We also provide a scaling relation between the radius of gyration and the chain length, and the exponent decreases significantly in the presence of chiral active forces.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信