Dissipationless edge transport in single-layer topological insulator Bi4Br4based device under high vacancy concentration.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Md Niloy Khan, Mahbub Alam
{"title":"Dissipationless edge transport in single-layer topological insulator Bi<sub>4</sub>Br<sub>4</sub>based device under high vacancy concentration.","authors":"Md Niloy Khan, Mahbub Alam","doi":"10.1088/1361-648X/adc5cf","DOIUrl":null,"url":null,"abstract":"<p><p>Single-layer Bismuth Monobromide (SL-Bi<sub>4</sub>Br<sub>4</sub>) is a recently experimentally confirmed room temperature quantum spin hall insulator with a relatively large bulk band gap. In this paper, we investigate the electronic properties of SL-Bi<sub>4</sub>Br<sub>4</sub>and single-layer bismuth monobromide nanoribbon (SL-Bi<sub>4</sub>Br<sub>4</sub>NR) introducing different vacancy defects near the nanoribbon edges. With maximally localized wannier function (MLWF) constructed Hamiltonian we show that SL-Bi<sub>4</sub>Br<sub>4</sub>NR edge states are protected by bulk topology and robust against disorder. In conjunction with MLWF and non-equilibrium Green's function, we also show that in devices made from SL-Bi<sub>4</sub>Br<sub>4</sub>, transmission through the topologically protected edge states do not suffer from degradation when the device is sufficiently wide. Increasing channel length and defect concentration affect only the bulk states transmission leaving edge states transmission perfectly quantized. This resilience against disorder signifies SL-Bi<sub>4</sub>Br<sub>4</sub>'s promising candidacy for next-generation electronic & spintronics devices application.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc5cf","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Single-layer Bismuth Monobromide (SL-Bi4Br4) is a recently experimentally confirmed room temperature quantum spin hall insulator with a relatively large bulk band gap. In this paper, we investigate the electronic properties of SL-Bi4Br4and single-layer bismuth monobromide nanoribbon (SL-Bi4Br4NR) introducing different vacancy defects near the nanoribbon edges. With maximally localized wannier function (MLWF) constructed Hamiltonian we show that SL-Bi4Br4NR edge states are protected by bulk topology and robust against disorder. In conjunction with MLWF and non-equilibrium Green's function, we also show that in devices made from SL-Bi4Br4, transmission through the topologically protected edge states do not suffer from degradation when the device is sufficiently wide. Increasing channel length and defect concentration affect only the bulk states transmission leaving edge states transmission perfectly quantized. This resilience against disorder signifies SL-Bi4Br4's promising candidacy for next-generation electronic & spintronics devices application.

高空位浓度下单层拓扑绝缘体bi4br4器件的无耗散边缘输运。
单层单溴化铋(SL-Bi4Br4)是最近实验证实的具有较大体带隙的室温量子自旋霍尔绝缘体(QSHI)。本文研究了在纳米带边缘引入不同空位缺陷的SL-Bi4Br4NR和单层单溴化铋纳米带(SL-Bi4Br4NR)的电子特性。通过构造hamilton ,我们证明了SL-Bi4Br4NR边缘状态受到大块拓扑的保护,并且具有鲁棒性 ;结合MLWF和非平衡格林函数(NEGF),我们还表明,在由SL-Bi4Br4制成的器件中,当器件足够宽时,通过拓扑保护的边缘状态的传输不会受到退化。增加通道长度和缺陷浓度仅影响体态传输,使边缘状态传输完全量化。这种抗无序的韧性意味着SL-Bi4Br4有望成为下一代电子和自旋电子器件的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信