Selenium alleviates high-fat diet induced hepatocyte lipid accumulation via exosome miR-22/FGFR1 pathway in grass carp.

IF 4.8 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chi Wang, Xiaotian Zhang, Guohao Liu, Cheng Zhang, Pengju Li, Pan He, Sha Liu, Hong Ji, Haibo Yu
{"title":"Selenium alleviates high-fat diet induced hepatocyte lipid accumulation via exosome miR-22/FGFR1 pathway in grass carp.","authors":"Chi Wang, Xiaotian Zhang, Guohao Liu, Cheng Zhang, Pengju Li, Pan He, Sha Liu, Hong Ji, Haibo Yu","doi":"10.1016/j.jnutbio.2025.109907","DOIUrl":null,"url":null,"abstract":"<p><p>The current study aims to investigate whether exosomal miRNAs are involved in lipid reduction by selenium (Se) in the liver of grass carp, through miRNA sequencing, transfection of miRNA mimic (miR-22m) or inhibitor (miR-22i), isolation of hepatocyte-derived exosomes and treatment, and detection of lipid metabolism-related genes and proteins. The miRNAs sequencing and bioinformatics revealed that miR-22 was most abundantly expressed in the differentially expressed miRNAs after selenium treatment, and was enriched in lipid metabolism-related pathways. Moreover, Se significantly up-regulated the miR-22 levels and reduced the lipid content in liver or hepatocytes of grass carp. Furthermore, the miR-22m significantly increased levels of miR-22 and reduced lipid content in grass carp hepatocytes, which were consistent with the Se-treatment. However, the miR-22i reversed these trends. Besides, the miR-22 suppressed the FGFR1-PI3K-AKT-mTOR signaling pathway and its downstream genes related to lipid synthesis. More importantly, the Se-treated hepatocyte-exosomes which were enriched in the miR-22 significantly reduced the triglycerides content in the oleic acid-treated hepatocytes. In summary, Se alleviated high fat-induced lipid accumulation in grass carp liver by up-regulating the expression of miR-22 which negatively regulates FGFR1 and its downstream regulatory genes. Moreover, exosomes participate in the lipid reduction by Se, which may be through carrying miR-22.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109907"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.109907","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study aims to investigate whether exosomal miRNAs are involved in lipid reduction by selenium (Se) in the liver of grass carp, through miRNA sequencing, transfection of miRNA mimic (miR-22m) or inhibitor (miR-22i), isolation of hepatocyte-derived exosomes and treatment, and detection of lipid metabolism-related genes and proteins. The miRNAs sequencing and bioinformatics revealed that miR-22 was most abundantly expressed in the differentially expressed miRNAs after selenium treatment, and was enriched in lipid metabolism-related pathways. Moreover, Se significantly up-regulated the miR-22 levels and reduced the lipid content in liver or hepatocytes of grass carp. Furthermore, the miR-22m significantly increased levels of miR-22 and reduced lipid content in grass carp hepatocytes, which were consistent with the Se-treatment. However, the miR-22i reversed these trends. Besides, the miR-22 suppressed the FGFR1-PI3K-AKT-mTOR signaling pathway and its downstream genes related to lipid synthesis. More importantly, the Se-treated hepatocyte-exosomes which were enriched in the miR-22 significantly reduced the triglycerides content in the oleic acid-treated hepatocytes. In summary, Se alleviated high fat-induced lipid accumulation in grass carp liver by up-regulating the expression of miR-22 which negatively regulates FGFR1 and its downstream regulatory genes. Moreover, exosomes participate in the lipid reduction by Se, which may be through carrying miR-22.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nutritional Biochemistry
Journal of Nutritional Biochemistry 医学-生化与分子生物学
CiteScore
9.50
自引率
3.60%
发文量
237
审稿时长
68 days
期刊介绍: Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology. Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信