J C Bellizotti Souza, Nicolas Vizarim, Cynthia J Olson Reichhardt, Charles Reichhardt, Pablo Venegas
{"title":"Skyrmionium Dynamics and Stability on One Dimensional Anisotropy Patterns.","authors":"J C Bellizotti Souza, Nicolas Vizarim, Cynthia J Olson Reichhardt, Charles Reichhardt, Pablo Venegas","doi":"10.1088/1361-648X/adc648","DOIUrl":null,"url":null,"abstract":"<p><p>We examine a skyrmionium driven over a periodic anisotropy pattern, which consists of disorder free regions and disordered regions. For small defect densities, the skyrmionium flows for an extended range of currents, and there is a critical current above which it transforms into a skyrmion. For increased amounts of quenched disorder, the current needed for the skyrmionium to transform into a skyrmion decreases, and there is a critical disorder density above which a moving skyrmionium is not stable. In the moving state, the skyrmionium to skyrmion transformation leads to a drop in the velocity and the onset of a finite skyrmion Hall angle. We also find a reentrance effect in which the pinned skyrmionium transforms into a skyrmion just above depinning, restabilizes into skyrmionium at larger drives, and becomes unstable again at large currents. We also show that adding a transverse shaking drive can increase the lifetime of a moving skyrmionium by reducing the effect of the pinning in the direction of the drive.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc648","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
We examine a skyrmionium driven over a periodic anisotropy pattern, which consists of disorder free regions and disordered regions. For small defect densities, the skyrmionium flows for an extended range of currents, and there is a critical current above which it transforms into a skyrmion. For increased amounts of quenched disorder, the current needed for the skyrmionium to transform into a skyrmion decreases, and there is a critical disorder density above which a moving skyrmionium is not stable. In the moving state, the skyrmionium to skyrmion transformation leads to a drop in the velocity and the onset of a finite skyrmion Hall angle. We also find a reentrance effect in which the pinned skyrmionium transforms into a skyrmion just above depinning, restabilizes into skyrmionium at larger drives, and becomes unstable again at large currents. We also show that adding a transverse shaking drive can increase the lifetime of a moving skyrmionium by reducing the effect of the pinning in the direction of the drive.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.