Polarity-sensitive dual emissive fluorescent carbon dots as highly specific targeting probes for lipid droplets in live cells.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Aminakutty Neerkattil, M M Bijeesh, K K Ghosh, Parasuraman Padmanabhan, Balázs Gulyás, V M Murukeshan, Jayeeta Bhattacharyya
{"title":"Polarity-sensitive dual emissive fluorescent carbon dots as highly specific targeting probes for lipid droplets in live cells.","authors":"Aminakutty Neerkattil, M M Bijeesh, K K Ghosh, Parasuraman Padmanabhan, Balázs Gulyás, V M Murukeshan, Jayeeta Bhattacharyya","doi":"10.1039/d5na00061k","DOIUrl":null,"url":null,"abstract":"<p><p>Polarity-sensitive fluorescent nanoparticles with intrinsic dual emission are invaluable tools for investigating microenvironmental polarity. Ratiometric fluorescent sensors, with their built-in self-calibration characteristics, offer higher sensitivity and more obvious visual detection in qualitative and quantitative analysis. In this context, we report the synthesis of polarity-sensitive, dual-emitting carbon dots <i>via</i> a solvothermal method and demonstrate their application in ratiometric polarity sensing. These carbon dots exhibit characteristic solvatochromic effects with emissions in both the blue and red spectral regions. Notably, we observed a remarkable 30-fold enhancement in the red-to-blue emission intensity ratio as the solvent polarity shifted from 0.245 to 0.318. The dual-emitting carbon dots demonstrate the highly sensitive and inherently reliable (self-calibration) polarity dependence of the emission spectra, facilitating their application in ratiometric polarity sensing. These dual-emitting carbon dots exhibited a strong affinity for lipid droplets in live cells, demonstrating their potential as highly specific targeting probes for imaging lipid droplets in live cells, without the need for additional targeting ligands. The characteristics of excellent biocompatibility, photostability, and good cellular imaging capabilities make these dual-emitting carbon dots highly promising for biomedical and sensing applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938281/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00061k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polarity-sensitive fluorescent nanoparticles with intrinsic dual emission are invaluable tools for investigating microenvironmental polarity. Ratiometric fluorescent sensors, with their built-in self-calibration characteristics, offer higher sensitivity and more obvious visual detection in qualitative and quantitative analysis. In this context, we report the synthesis of polarity-sensitive, dual-emitting carbon dots via a solvothermal method and demonstrate their application in ratiometric polarity sensing. These carbon dots exhibit characteristic solvatochromic effects with emissions in both the blue and red spectral regions. Notably, we observed a remarkable 30-fold enhancement in the red-to-blue emission intensity ratio as the solvent polarity shifted from 0.245 to 0.318. The dual-emitting carbon dots demonstrate the highly sensitive and inherently reliable (self-calibration) polarity dependence of the emission spectra, facilitating their application in ratiometric polarity sensing. These dual-emitting carbon dots exhibited a strong affinity for lipid droplets in live cells, demonstrating their potential as highly specific targeting probes for imaging lipid droplets in live cells, without the need for additional targeting ligands. The characteristics of excellent biocompatibility, photostability, and good cellular imaging capabilities make these dual-emitting carbon dots highly promising for biomedical and sensing applications.

极性敏感双发射荧光碳点作为活细胞中脂滴的高度特异性靶向探针。
具有双发射特性的极性敏感荧光纳米粒子是研究微环境极性的宝贵工具。比率荧光传感器具有内置自校准特性,在定性和定量分析中具有更高的灵敏度和更明显的视觉检测。在此背景下,我们报道了通过溶剂热方法合成极性敏感的双发射碳点,并展示了它们在比例极性传感中的应用。这些碳点在蓝色和红色光谱区都表现出典型的溶剂化变色效应。值得注意的是,当溶剂极性从0.245变为0.318时,我们观察到红蓝发射强度比显著提高了30倍。双发射碳点显示出发射光谱的高灵敏度和固有可靠(自校准)极性依赖性,有利于其在比例极性传感中的应用。这些双发射碳点对活细胞中的脂滴表现出很强的亲和力,证明了它们作为高特异性靶向探针成像活细胞中的脂滴的潜力,而不需要额外的靶向配体。优异的生物相容性、光稳定性和良好的细胞成像能力使这些双发射碳点在生物医学和传感应用中具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信