Transcription Activator FgDDT Interacts With FgISW1 to Regulate Fungal Development and Pathogenicity in the Global Pathogen Fusarium graminearum.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES
Xiaozhen Zhao, Yuxin Qiu, Aning Jiang, Yan Huang, Peixue Ma, Bingqin Yuan, Li Chen, Chengqi Zhang
{"title":"Transcription Activator FgDDT Interacts With FgISW1 to Regulate Fungal Development and Pathogenicity in the Global Pathogen Fusarium graminearum.","authors":"Xiaozhen Zhao, Yuxin Qiu, Aning Jiang, Yan Huang, Peixue Ma, Bingqin Yuan, Li Chen, Chengqi Zhang","doi":"10.1111/mpp.70076","DOIUrl":null,"url":null,"abstract":"<p><p>Several DNA-binding homeobox and different transcription factor (DDT)-domain proteins form stable remodelling complexes with imitation switch (ISWI) chromatin remodelling factors. ISWI complexes have been reported to be involved in various biological processes in many eukaryotic species. However, in phytopathogenic fungi, the regulatory mechanisms underlying the functions of DDT-domain proteins in ISWI complexes remain unclear. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) assays were used to demonstrate that FgDDT from Fusarium graminearum was enriched within the promoter regions of genes associated with metabolic and MAPK signalling pathways, thereby activating their expression. Moreover, two additional ISWI genes, FgISW1 and FgISW2, were identified and characterised, with subsequent analyses indicating that the ISWI components FgISW1 and FgDDT are essential for fungal development and pathogenicity rather than FgISW2. Further experiments revealed that FgDDT binds to FgISW1 to form an ISWI complex that activates the expression of functional genes in F. graminearum, consequently contributing to its pathogenicity and development. FgDDT was also observed as highly conserved in Fusarium species but exhibits low similarity to homologues in Homo sapiens and Arabidopsis thaliana, suggesting that functional studies of FgDDT are crucial to uncover its unique role within Fusarium. These findings provide a basis for further understanding the molecular mechanisms by which ISWI complexes function in fungi and contribute to their pathogenicity.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 4","pages":"e70076"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70076","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Several DNA-binding homeobox and different transcription factor (DDT)-domain proteins form stable remodelling complexes with imitation switch (ISWI) chromatin remodelling factors. ISWI complexes have been reported to be involved in various biological processes in many eukaryotic species. However, in phytopathogenic fungi, the regulatory mechanisms underlying the functions of DDT-domain proteins in ISWI complexes remain unclear. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) assays were used to demonstrate that FgDDT from Fusarium graminearum was enriched within the promoter regions of genes associated with metabolic and MAPK signalling pathways, thereby activating their expression. Moreover, two additional ISWI genes, FgISW1 and FgISW2, were identified and characterised, with subsequent analyses indicating that the ISWI components FgISW1 and FgDDT are essential for fungal development and pathogenicity rather than FgISW2. Further experiments revealed that FgDDT binds to FgISW1 to form an ISWI complex that activates the expression of functional genes in F. graminearum, consequently contributing to its pathogenicity and development. FgDDT was also observed as highly conserved in Fusarium species but exhibits low similarity to homologues in Homo sapiens and Arabidopsis thaliana, suggesting that functional studies of FgDDT are crucial to uncover its unique role within Fusarium. These findings provide a basis for further understanding the molecular mechanisms by which ISWI complexes function in fungi and contribute to their pathogenicity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信