Clade V MLO Genes Are Negative Modulators of Cucumber Defence Response to Meloidogyne incognita.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES
Xiaoxiao Xie, Jian Ling, Shaoyun Dong, Mingjuan Zhai, Junru Lu, Jianlong Zhao, Xueyong Yang, Xin Dong, Yan Li, Richard G F Visser, Yuling Bai, Zhenchuan Mao, Shengping Zhang, Bingyan Xie
{"title":"Clade V MLO Genes Are Negative Modulators of Cucumber Defence Response to Meloidogyne incognita.","authors":"Xiaoxiao Xie, Jian Ling, Shaoyun Dong, Mingjuan Zhai, Junru Lu, Jianlong Zhao, Xueyong Yang, Xin Dong, Yan Li, Richard G F Visser, Yuling Bai, Zhenchuan Mao, Shengping Zhang, Bingyan Xie","doi":"10.1111/mpp.70078","DOIUrl":null,"url":null,"abstract":"<p><p>Cucumber production is seriously constrained by Meloidogyne incognita. Because no resistance resources to the pathogen have been reported, disabling susceptibility genes may represent a novel breeding strategy to introduce resistance against this nematode in cucumber. Here, we studied the clade V MLO genes for their involvement in the interaction between cucumber and M. incognita. Our results showed that Arabidopsis clade V MLO mutants were resistant to M. incognita. Cucumber has three clade V MLO genes, CsaMLO1, CsaMLO8 and CsaMLO11, with upregulated expression upon inoculation with M. incognita. Heterologous overexpression of CsaMLO1, CsaMLO8 and CsaMLO11 in Arabidopsis mutants restored susceptibility to varying degrees. Silencing and knockout of individual clade V MLO genes in cucumber reduced susceptibility to M. incognita. The cucumber CRISPR mutants produced similar fruits as the wild type (WT) did. Although the yields of two single mutants (M11<sup>1</sup> and M11<sup>2</sup>) and two double mutants (M8<sup>1</sup> M11<sup>1</sup> and M8<sup>1</sup> M11<sup>2</sup>) were reduced compared to WT, the yields of M8<sup>1</sup> and M8<sup>2</sup> were not decreased. In summary, clade V MLO genes function as susceptibility genes for M. incognita in cucumber. Among them, CsaMLO8 may be the most promising candidate for M. incognita resistance breeding in cucumber.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 4","pages":"e70078"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950635/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70078","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cucumber production is seriously constrained by Meloidogyne incognita. Because no resistance resources to the pathogen have been reported, disabling susceptibility genes may represent a novel breeding strategy to introduce resistance against this nematode in cucumber. Here, we studied the clade V MLO genes for their involvement in the interaction between cucumber and M. incognita. Our results showed that Arabidopsis clade V MLO mutants were resistant to M. incognita. Cucumber has three clade V MLO genes, CsaMLO1, CsaMLO8 and CsaMLO11, with upregulated expression upon inoculation with M. incognita. Heterologous overexpression of CsaMLO1, CsaMLO8 and CsaMLO11 in Arabidopsis mutants restored susceptibility to varying degrees. Silencing and knockout of individual clade V MLO genes in cucumber reduced susceptibility to M. incognita. The cucumber CRISPR mutants produced similar fruits as the wild type (WT) did. Although the yields of two single mutants (M111 and M112) and two double mutants (M81 M111 and M81 M112) were reduced compared to WT, the yields of M81 and M82 were not decreased. In summary, clade V MLO genes function as susceptibility genes for M. incognita in cucumber. Among them, CsaMLO8 may be the most promising candidate for M. incognita resistance breeding in cucumber.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信