A Necrotrophic Phytopathogen-Derived GPI-Anchored Protein Functions as an Elicitor to Activate Plant Immunity and Enhance Resistance.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES
Guangxing Miao, Jiatao Xie, Yanping Fu, Bo Li, Tao Chen, Yang Lin, Xiao Yu, Tom Hsiang, Daohong Jiang, Jiasen Cheng
{"title":"A Necrotrophic Phytopathogen-Derived GPI-Anchored Protein Functions as an Elicitor to Activate Plant Immunity and Enhance Resistance.","authors":"Guangxing Miao, Jiatao Xie, Yanping Fu, Bo Li, Tao Chen, Yang Lin, Xiao Yu, Tom Hsiang, Daohong Jiang, Jiasen Cheng","doi":"10.1111/mpp.70072","DOIUrl":null,"url":null,"abstract":"<p><p>GPI-anchored proteins are widely distributed in eukaryotic cells. However, their functions are still poorly understood in necrotrophic pathogenic fungi. Here, based on Agrobacterium tumefaciens-mediated transient expression screening, a novel secreted GPI-anchored protein, SsGP1, that induces plant cell death was characterised in Sclerotinia sclerotiorum. The homologues of SsGP1 are broadly distributed among ascomycetes. SsGP1 can activate plant immune responses, including reactive oxygen species (ROS) burst and the up-regulated expression of immunity genes, in a manner that is dependent on BAK1 but independent of SOBIR1. Treatment of plants with SsGP1 protein enhanced the resistance of Nicotiana benthamiana and Arabidopsis thaliana to S. sclerotiorum. Our findings reveal that SsGP1 functions as a pathogen-associated molecular pattern (PAMP) and is recognised by plants in a BAK1-dependent manner.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 4","pages":"e70072"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70072","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

GPI-anchored proteins are widely distributed in eukaryotic cells. However, their functions are still poorly understood in necrotrophic pathogenic fungi. Here, based on Agrobacterium tumefaciens-mediated transient expression screening, a novel secreted GPI-anchored protein, SsGP1, that induces plant cell death was characterised in Sclerotinia sclerotiorum. The homologues of SsGP1 are broadly distributed among ascomycetes. SsGP1 can activate plant immune responses, including reactive oxygen species (ROS) burst and the up-regulated expression of immunity genes, in a manner that is dependent on BAK1 but independent of SOBIR1. Treatment of plants with SsGP1 protein enhanced the resistance of Nicotiana benthamiana and Arabidopsis thaliana to S. sclerotiorum. Our findings reveal that SsGP1 functions as a pathogen-associated molecular pattern (PAMP) and is recognised by plants in a BAK1-dependent manner.

一种坏死性植物病原体衍生的gpi锚定蛋白作为启动子激活植物免疫并增强抗性。
gpi锚定蛋白广泛分布于真核细胞中。然而,它们在坏死性致病性真菌中的作用仍然知之甚少。本研究基于农杆菌介导的瞬时表达筛选,鉴定了一种在菌核菌中诱导植物细胞死亡的新型分泌的gpi锚定蛋白SsGP1。SsGP1的同源物广泛分布于子囊菌中。SsGP1可以激活植物的免疫应答,包括活性氧(ROS)的爆发和免疫基因的上调表达,其方式依赖于BAK1而不依赖于SOBIR1。SsGP1蛋白处理植株增强了本烟和拟南芥对菌核病菌的抗性。我们的研究结果表明,SsGP1作为一种病原体相关分子模式(PAMP)发挥作用,并以依赖于bak1的方式被植物识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信