Yu Lu, Chengbao Liu, Leizhi Zheng, Feng Chen, Junchao Qian, Xianrong Meng, Zhigang Chen, Sheng Zhong, Bin He
{"title":"N<sub>3C</sub>-Defect-Tuned g-C<sub>3</sub>N<sub>4</sub> Photocatalysts: Structural Optimization and Enhanced Tetracycline Degradation Performance.","authors":"Yu Lu, Chengbao Liu, Leizhi Zheng, Feng Chen, Junchao Qian, Xianrong Meng, Zhigang Chen, Sheng Zhong, Bin He","doi":"10.3390/nano15060466","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of nitrogen defects in graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has the important effect of improving its photocatalytic performance. This study employs a simple and environmentally friendly one-step pyrolysis method, successfully preparing g-C<sub>3</sub>N<sub>4</sub> materials with adjustable N<sub>3C</sub> defect concentrations through the calcination of a urea and ammonium acetate mixture. By introducing N<sub>3C</sub> defects and adjusting the band structure, the conduction band of the g-C<sub>3</sub>N<sub>4</sub> was shifted downward by 0.12 V, overcoming the traditional application limitations of N<sub>3C</sub> defects and enabling an innovative transition from enhanced oxidation to enhanced reduction capabilities. This transition significantly enhanced the adsorption and activation of O<sub>2</sub>. Characterization results showed that the introduction of N<sub>3C</sub> defects increased the specific surface area from 44.07 m<sup>2</sup>/g to 87.08 m<sup>2</sup>/g, enriching reactive sites, while narrowing the bandgap to 2.41 eV enhanced visible light absorption capacity. The g-C<sub>3</sub>N<sub>4</sub> with N<sub>3C</sub> defects showed significantly enhanced photocatalytic activity, achieving peak performance of 54.8% for tetracycline (TC), approximately 1.5 times that of the original g-C<sub>3</sub>N<sub>4</sub>, with only a 5.4% (49.4%) decrease in photocatalytic efficiency after four cycles of testing. This study demonstrates that the introduction of N<sub>3C</sub> defects significantly enhances the photocatalytic performance of g-C<sub>3</sub>N<sub>4</sub>, expanding its potential applications in environmental remediation.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060466","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of nitrogen defects in graphitic carbon nitride (g-C3N4) has the important effect of improving its photocatalytic performance. This study employs a simple and environmentally friendly one-step pyrolysis method, successfully preparing g-C3N4 materials with adjustable N3C defect concentrations through the calcination of a urea and ammonium acetate mixture. By introducing N3C defects and adjusting the band structure, the conduction band of the g-C3N4 was shifted downward by 0.12 V, overcoming the traditional application limitations of N3C defects and enabling an innovative transition from enhanced oxidation to enhanced reduction capabilities. This transition significantly enhanced the adsorption and activation of O2. Characterization results showed that the introduction of N3C defects increased the specific surface area from 44.07 m2/g to 87.08 m2/g, enriching reactive sites, while narrowing the bandgap to 2.41 eV enhanced visible light absorption capacity. The g-C3N4 with N3C defects showed significantly enhanced photocatalytic activity, achieving peak performance of 54.8% for tetracycline (TC), approximately 1.5 times that of the original g-C3N4, with only a 5.4% (49.4%) decrease in photocatalytic efficiency after four cycles of testing. This study demonstrates that the introduction of N3C defects significantly enhances the photocatalytic performance of g-C3N4, expanding its potential applications in environmental remediation.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.