{"title":"The mechanisms and applications of endothelial progenitor cell therapy in the treatment of intracranial aneurysm.","authors":"Shiyu Shen, Tonglin Pan, Peixi Liu, Yanlong Tian, Yuan Shi, Wei Zhu","doi":"10.1186/s12967-025-06401-w","DOIUrl":null,"url":null,"abstract":"<p><p>The pathophysiological mechanism of intracranial aneurysm (IA) involves the dynamic interaction of ECM abnormalities, hemodynamic stress, and inflammatory response. The rupture of intracranial aneurysm will cause serious consequences. Multiple studies have confirmed the important role and potential application of endothelial progenitor cells (EPCs) in vascular repair. This review focuses on the specific mechanism of EPCs in the treatment of intracranial aneurysms, which promote re-endothelialization and angiogenesis through bone marrow mobilization, targeted migration to the site of injury, differentiation into mature endothelial cells, and secretion of angiogenic factors. In addition, EPCs maintain ECM homeostasis by regulating MMP/IMP balance, inhibiting aneurysm wall thinning and structural damage. Based on the vascular repair mechanism of EPCs, new treatment strategies such as \"biologically active\" spring coils (loaded with EPCs or SDF-1α) and flow diverters(FDs) combined with EPCs therapy have been developed to synergistically promote carotid endothelialization of aneurysms and reduce the risk of recurrence. Future research needs to further validate the long-term efficacy and precise regulatory mechanisms of EPCs in clinical translation, providing new directions for IA treatment.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"377"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951544/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06401-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pathophysiological mechanism of intracranial aneurysm (IA) involves the dynamic interaction of ECM abnormalities, hemodynamic stress, and inflammatory response. The rupture of intracranial aneurysm will cause serious consequences. Multiple studies have confirmed the important role and potential application of endothelial progenitor cells (EPCs) in vascular repair. This review focuses on the specific mechanism of EPCs in the treatment of intracranial aneurysms, which promote re-endothelialization and angiogenesis through bone marrow mobilization, targeted migration to the site of injury, differentiation into mature endothelial cells, and secretion of angiogenic factors. In addition, EPCs maintain ECM homeostasis by regulating MMP/IMP balance, inhibiting aneurysm wall thinning and structural damage. Based on the vascular repair mechanism of EPCs, new treatment strategies such as "biologically active" spring coils (loaded with EPCs or SDF-1α) and flow diverters(FDs) combined with EPCs therapy have been developed to synergistically promote carotid endothelialization of aneurysms and reduce the risk of recurrence. Future research needs to further validate the long-term efficacy and precise regulatory mechanisms of EPCs in clinical translation, providing new directions for IA treatment.
期刊介绍:
The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.