{"title":"The HP1 hinge region: more than just a linker for heterochromatin.","authors":"Hiroaki Tachiwana, Noriko Saitoh","doi":"10.1093/jb/mvaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Heterochromatin plays an important role in eukaryotic cellular functions, including gene silencing, high-order chromatin structure, genome stability, and so on. Heterochromatin protein 1 (HP1), a key component of heterochromatin, is conserved from fission yeast to mammals. HP1 binds to histone H3K9me, a hallmark of heterochromatin, through its N-terminal chromodomain (CD) and self-dimerizes and recruits other chromatin proteins through its C-terminal chromo shadow domain (CSD), acting as an epigenetic reader. Between the CD and CSD is an unstructured, less conserved hinge region, which has been implicated in nucleic acid binding. The molecular dissection of the fission yeast HP1 orthologue, Chp2, recently reported in this journal, elucidated the cooperative DNA binding of the hinge and N-terminus of the CSD, which contributes to the stable association with heterochromatin and gene silencing. In this commentary, we focus on the mechanisms involving the HP1 hinge region, which is more than a simple linker.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterochromatin plays an important role in eukaryotic cellular functions, including gene silencing, high-order chromatin structure, genome stability, and so on. Heterochromatin protein 1 (HP1), a key component of heterochromatin, is conserved from fission yeast to mammals. HP1 binds to histone H3K9me, a hallmark of heterochromatin, through its N-terminal chromodomain (CD) and self-dimerizes and recruits other chromatin proteins through its C-terminal chromo shadow domain (CSD), acting as an epigenetic reader. Between the CD and CSD is an unstructured, less conserved hinge region, which has been implicated in nucleic acid binding. The molecular dissection of the fission yeast HP1 orthologue, Chp2, recently reported in this journal, elucidated the cooperative DNA binding of the hinge and N-terminus of the CSD, which contributes to the stable association with heterochromatin and gene silencing. In this commentary, we focus on the mechanisms involving the HP1 hinge region, which is more than a simple linker.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.