{"title":"β-Elemene inhibits adipogenesis in 3T3-L1 cells by regulating AMPK pathway.","authors":"Xiang Deng, Zhenmin Liu, Sen Yang","doi":"10.3164/jcbn.24-179","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of childhood obesity in global is quickly augmented, resulting into grievous public health problems and influencing adolescent development. β-Elemene is a sesquiterpene, and can extracted from traditional Chinese medicine-<i>Curcuma longa</i> L. β-Elemene has been discovered to display regulatory functions in multiple diseases, but it's roles in obesity need further investigations. The purpose of this work is to investigate the regulatory impacts of β-elemene on obesity progression and associated pathways. In this study, it was revealed that the heightened lipid accumulation in 3T3-L1 cells triggered by 3-isobutyl-1-methylxanthine + dexamethazone + insulin (MDI) can be restrained by β-elemene. Furthermore, β-elemene can modulate lipid metabolism in 3T3-L1 cells mediated by MDI. The glucose consumption was descended after insulin resistance treatment, but this impact was reversed after β-elemene treatment. At last, it was illustrated that the AMPK pathway was retarded after β-elemene induction, but this change was offset after β-elemene treatment. To sum up, our results manifested that β-elemene inhibited adipogenesis in 3T3-L1 cells, and evoked the AMPK pathway. This project may supply serviceable insights of β-elemene in the progression of obesity.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"76 2","pages":"125-130"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11936742/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.24-179","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of childhood obesity in global is quickly augmented, resulting into grievous public health problems and influencing adolescent development. β-Elemene is a sesquiterpene, and can extracted from traditional Chinese medicine-Curcuma longa L. β-Elemene has been discovered to display regulatory functions in multiple diseases, but it's roles in obesity need further investigations. The purpose of this work is to investigate the regulatory impacts of β-elemene on obesity progression and associated pathways. In this study, it was revealed that the heightened lipid accumulation in 3T3-L1 cells triggered by 3-isobutyl-1-methylxanthine + dexamethazone + insulin (MDI) can be restrained by β-elemene. Furthermore, β-elemene can modulate lipid metabolism in 3T3-L1 cells mediated by MDI. The glucose consumption was descended after insulin resistance treatment, but this impact was reversed after β-elemene treatment. At last, it was illustrated that the AMPK pathway was retarded after β-elemene induction, but this change was offset after β-elemene treatment. To sum up, our results manifested that β-elemene inhibited adipogenesis in 3T3-L1 cells, and evoked the AMPK pathway. This project may supply serviceable insights of β-elemene in the progression of obesity.
期刊介绍:
Journal of Clinical Biochemistry and Nutrition (JCBN) is
an international, interdisciplinary publication encompassing
chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The
Journal welcomes original contributions dealing with all
aspects of clinical biochemistry and clinical nutrition
including both in vitro and in vivo studies.