{"title":"Semaglutide improves cognitive function and neuroinflammation in APP/PS1 transgenic mice by activating AMPK and inhibiting TLR4/NF-κB pathway.","authors":"Yanyu Zhai, Kaili Lu, Yuan Yuan, Ziyao Zhang, Lixia Xue, Fei Zhao, Xiaofeng Xu, Hongmei Wang","doi":"10.1177/13872877251329439","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundAlzheimer's disease (AD) causes cognitive function disorder and has become the preeminent cause of dementia. Glucagon-like peptide-1 (GLP-1) receptor agonists, semaglutide, have shown positive effects on promoting the cognitive function. However, research about the mechanism of semaglutide as a therapeutic intervention in AD is sparse.ObjectiveThis study was to investigate the therapeutic efficacy of semaglutide in a transgenic mouse model of AD pathology and explored the detailed mechanism by semaglutide modulated neuroinflammatory processes.MethodsMale amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice were treated with semaglutide or vehicle for 8 weeks. Morris water maze test was used to assess the therapeutic efficacy of semaglutide on recognition function. Pathology analysis was performed to detect the deposition of amyloid plaques. High-throughput sequencing analysis was applied to specify the mechanism. Microglia and astrocyte activation were assessed with immunofluorescent staining. Inflammation cytokine levels were evaluated with enzyme-linked immunosorbent assay (ELISA). Related proteins and pathway were evaluated with western blot.ResultsSemaglutide treatment attenuated Aβ accumulation and enhanced cognitive function in APP/PS1 transgenic mice. Through transcriptomic profiling, immunohistochemical staining, and ELISA, semaglutide was substantiated to inhibit the overactivation of microglia and astrocytes, as well as to curtail the secretion of inflammatory mediators. Furthermore, semaglutide robustly activated AMP-activated protein kinase (AMPK) and suppressed the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling cascade, thus reducing the Aβ deposition and dampening the inflammatory cascade.ConclusionsThe results demonstrated that semaglutide mitigated neuroinflammation and decelerated the advance of AD in APP/PS1 transgenic mice.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877251329439"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877251329439","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
BackgroundAlzheimer's disease (AD) causes cognitive function disorder and has become the preeminent cause of dementia. Glucagon-like peptide-1 (GLP-1) receptor agonists, semaglutide, have shown positive effects on promoting the cognitive function. However, research about the mechanism of semaglutide as a therapeutic intervention in AD is sparse.ObjectiveThis study was to investigate the therapeutic efficacy of semaglutide in a transgenic mouse model of AD pathology and explored the detailed mechanism by semaglutide modulated neuroinflammatory processes.MethodsMale amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice were treated with semaglutide or vehicle for 8 weeks. Morris water maze test was used to assess the therapeutic efficacy of semaglutide on recognition function. Pathology analysis was performed to detect the deposition of amyloid plaques. High-throughput sequencing analysis was applied to specify the mechanism. Microglia and astrocyte activation were assessed with immunofluorescent staining. Inflammation cytokine levels were evaluated with enzyme-linked immunosorbent assay (ELISA). Related proteins and pathway were evaluated with western blot.ResultsSemaglutide treatment attenuated Aβ accumulation and enhanced cognitive function in APP/PS1 transgenic mice. Through transcriptomic profiling, immunohistochemical staining, and ELISA, semaglutide was substantiated to inhibit the overactivation of microglia and astrocytes, as well as to curtail the secretion of inflammatory mediators. Furthermore, semaglutide robustly activated AMP-activated protein kinase (AMPK) and suppressed the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling cascade, thus reducing the Aβ deposition and dampening the inflammatory cascade.ConclusionsThe results demonstrated that semaglutide mitigated neuroinflammation and decelerated the advance of AD in APP/PS1 transgenic mice.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.