Deconstructing ENDS aerosols: generation and characterization methods.

IF 2 4区 医学 Q4 TOXICOLOGY
Shaligram Sharma, Maureen Meister, David Christiani, Qian Zhang, Mark Wilson, Travis Goldsmith, I Mark Olfert, Anand Ranpara, Cristi Bell-Huff, Marilyn Black, Jonathan Shannahan, Christa Wright
{"title":"Deconstructing ENDS aerosols: generation and characterization methods.","authors":"Shaligram Sharma, Maureen Meister, David Christiani, Qian Zhang, Mark Wilson, Travis Goldsmith, I Mark Olfert, Anand Ranpara, Cristi Bell-Huff, Marilyn Black, Jonathan Shannahan, Christa Wright","doi":"10.1080/08958378.2025.2481434","DOIUrl":null,"url":null,"abstract":"<p><p>While electronic nicotine delivery systems or ENDS are often marketed as a safer alternative to traditional cigarettes, emissions generated during the operation of these devices contain a complex mixture of toxic substances. ENDS emissions are primarily composed of fine particulate matter (PM<sub>2.5</sub>, smaller than 2.5 µm in size) and ultrafine particles/nanoparticles (PM<sub>0.1</sub>, smaller than 100 nm in size), metals (nickel, copper, zinc, tin, lead, and their oxides), carbonyls (formaldehyde, acetaldehyde (a carcinogen), and acrolein), volatile organic compounds (VOCs) (benzene, toluene, and over 70 other VOCs), nicotine, and many unknown chemicals. The levels and composition of these toxic emissions can vary based on factors like device design, e-liquid formulation, device power and temperature levels, and vaping behavior of the user. Within this section of the Special Issue 'Science Education and Research on Vaping and Interventions for Community Engagement', important parameters in defining and characterizing ENDS aerosols will be discussed. Hazardous components of ENDS aerosols including particulate matter, heavy metals, and volatile organic compounds will be delineated and appropriate analytical methods to accurately determine physicochemical properties will be highlighted. Definitions and comparisons of first-hand, second-hand, and third-hand emissions will also be explored alongside pertinent device parameters that influence each type of ENDS emission.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"1-13"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2025.2481434","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While electronic nicotine delivery systems or ENDS are often marketed as a safer alternative to traditional cigarettes, emissions generated during the operation of these devices contain a complex mixture of toxic substances. ENDS emissions are primarily composed of fine particulate matter (PM2.5, smaller than 2.5 µm in size) and ultrafine particles/nanoparticles (PM0.1, smaller than 100 nm in size), metals (nickel, copper, zinc, tin, lead, and their oxides), carbonyls (formaldehyde, acetaldehyde (a carcinogen), and acrolein), volatile organic compounds (VOCs) (benzene, toluene, and over 70 other VOCs), nicotine, and many unknown chemicals. The levels and composition of these toxic emissions can vary based on factors like device design, e-liquid formulation, device power and temperature levels, and vaping behavior of the user. Within this section of the Special Issue 'Science Education and Research on Vaping and Interventions for Community Engagement', important parameters in defining and characterizing ENDS aerosols will be discussed. Hazardous components of ENDS aerosols including particulate matter, heavy metals, and volatile organic compounds will be delineated and appropriate analytical methods to accurately determine physicochemical properties will be highlighted. Definitions and comparisons of first-hand, second-hand, and third-hand emissions will also be explored alongside pertinent device parameters that influence each type of ENDS emission.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inhalation Toxicology
Inhalation Toxicology 医学-毒理学
CiteScore
4.10
自引率
4.80%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals. The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信