Investigating the Impact of Training Protocols on Myoelectric Pattern Recognition Control in Upper-Limb Amputees.

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Elaheh Mohammadreza, Vinicius Prado Da Fonseca, Xianta Jiang
{"title":"Investigating the Impact of Training Protocols on Myoelectric Pattern Recognition Control in Upper-Limb Amputees.","authors":"Elaheh Mohammadreza, Vinicius Prado Da Fonseca, Xianta Jiang","doi":"10.1109/TNSRE.2025.3555100","DOIUrl":null,"url":null,"abstract":"<p><p>Myoelectric control schemes, pivotal in the control of prosthetic limbs, are often developed and evaluated in ideal laboratory conditions. However, these controlled environments may not fully represent the diverse challenges users face in real-world scenarios. The present study aims to tackle some of the existing research limitations by exploring the influence of various model training protocols on myoelectric pattern recognition within a semi-autonomous control system, which has been shown to reduce user cognitive load and enhance overall system performance. Specifically, we focus on the effects of limb movement and weight-bearing activities. We investigate the effect of four distinct training protocols in pattern recognition control for upper-limb prostheses, including training without a prosthetic hand, training with a prosthetic hand and static gestures, training with a prosthetic hand and dynamic movements guided by a graphical user interface (GUI), and training with a prosthetic hand having dynamic transfers and unguided. By examining these conditions, we aim to provide an understanding of how different training protocols and different labeling methods influence myoelectric pattern recognition control. Our results, based on experiments conducted with 14 able-bodied and one amputee participant, suggest that introducing the weight of the prosthetic hand and dynamic movements of the arm to the training data improves the accuracy and robustness of the control scheme. Real-time control experiments with a group of five able-bodied and one amputee participant using a multi-DOF prosthetic hand also verify our findings.</p>","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TNSRE.2025.3555100","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Myoelectric control schemes, pivotal in the control of prosthetic limbs, are often developed and evaluated in ideal laboratory conditions. However, these controlled environments may not fully represent the diverse challenges users face in real-world scenarios. The present study aims to tackle some of the existing research limitations by exploring the influence of various model training protocols on myoelectric pattern recognition within a semi-autonomous control system, which has been shown to reduce user cognitive load and enhance overall system performance. Specifically, we focus on the effects of limb movement and weight-bearing activities. We investigate the effect of four distinct training protocols in pattern recognition control for upper-limb prostheses, including training without a prosthetic hand, training with a prosthetic hand and static gestures, training with a prosthetic hand and dynamic movements guided by a graphical user interface (GUI), and training with a prosthetic hand having dynamic transfers and unguided. By examining these conditions, we aim to provide an understanding of how different training protocols and different labeling methods influence myoelectric pattern recognition control. Our results, based on experiments conducted with 14 able-bodied and one amputee participant, suggest that introducing the weight of the prosthetic hand and dynamic movements of the arm to the training data improves the accuracy and robustness of the control scheme. Real-time control experiments with a group of five able-bodied and one amputee participant using a multi-DOF prosthetic hand also verify our findings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信