Efficient Biosynthesis of Gastrodin by UDP-Glycosyltransferase from Rauvolfia serpentina.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lin Ge, Yu Xia, Wenxin Xu, Ruobing Jia, Tingting Zhang
{"title":"Efficient Biosynthesis of Gastrodin by UDP-Glycosyltransferase from <i>Rauvolfia serpentina</i>.","authors":"Lin Ge, Yu Xia, Wenxin Xu, Ruobing Jia, Tingting Zhang","doi":"10.4014/jmb.2501.01002","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrodin, the primary bioactive constituent of <i>Gastrodia elata</i>, possesses numerous remarkable pharmacological properties. In this investigation, UDP-glycosyltransferase from <i>Rauvolfia serpentina</i> (RsUGT) was expressed, subsequently purified and characterized. The maximum yield of the enzyme was 17.57 mU/ml and possessed a relative molecular weight of approximately 77.7 kDa. Utilizing GST affinity resin, RsUGT was purified 20.8-fold, with an overall recovery rate of 58.6% and specific activity of 79.2 mU/mg. The optimal temperature and pH for RsUGT was identified as 40°C and 10.0, respectively. Notably, 2% DMSO could increase the RsUGT activity by 12.15%. The Michaelis-Menten constants <i>K</i><sub>M</sub> and <i>V</i><sub>max</sub> were determined to be 0.50mM and 171.60 mU/mg. By optimizing the conditions for the enzymatic biosynthesis of gastrodin by RsUGT, the highest gastrodin production was 285.35 mg/l, accompanied by a molar conversion rate of 99.67%. In addition, the conditions of gastrodin biosynthesis by recombinant strain BL-RsUGT were also studied. The highest gastrodin production was 225.99 mg/l, and the corresponding <i>p</i>HBA conversion rate was 98.00%. These findings confirmed the promising potential of RsUGT in the production of gastrodin.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2501002"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2501.01002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastrodin, the primary bioactive constituent of Gastrodia elata, possesses numerous remarkable pharmacological properties. In this investigation, UDP-glycosyltransferase from Rauvolfia serpentina (RsUGT) was expressed, subsequently purified and characterized. The maximum yield of the enzyme was 17.57 mU/ml and possessed a relative molecular weight of approximately 77.7 kDa. Utilizing GST affinity resin, RsUGT was purified 20.8-fold, with an overall recovery rate of 58.6% and specific activity of 79.2 mU/mg. The optimal temperature and pH for RsUGT was identified as 40°C and 10.0, respectively. Notably, 2% DMSO could increase the RsUGT activity by 12.15%. The Michaelis-Menten constants KM and Vmax were determined to be 0.50mM and 171.60 mU/mg. By optimizing the conditions for the enzymatic biosynthesis of gastrodin by RsUGT, the highest gastrodin production was 285.35 mg/l, accompanied by a molar conversion rate of 99.67%. In addition, the conditions of gastrodin biosynthesis by recombinant strain BL-RsUGT were also studied. The highest gastrodin production was 225.99 mg/l, and the corresponding pHBA conversion rate was 98.00%. These findings confirmed the promising potential of RsUGT in the production of gastrodin.

用udp -糖基转移酶高效合成天麻素的研究。
天麻素是天麻的主要生物活性成分,具有许多显著的药理特性。在这项研究中,表达了蛇毛鼠(RsUGT)的udp -糖基转移酶,随后进行了纯化和表征。酶的最大产率为17.57 mU/ml,相对分子量约为77.7 kDa。利用GST亲和树脂对RsUGT进行了20.8倍的纯化,总回收率为58.6%,比活性为79.2 mU/mg。RsUGT的最佳温度和pH分别为40°C和10.0。值得注意的是,2% DMSO可使RsUGT活性提高12.15%。Michaelis-Menten常数KM和Vmax分别为0.50mM和171.60 mU/mg。通过优化RsUGT酶法合成天麻素的条件,天麻素的最高产量为285.35 mg/l,摩尔转化率为99.67%。此外,还对重组菌株BL-RsUGT合成天麻素的条件进行了研究。天麻素最高产量为225.99 mg/l, pHBA转化率为98.00%。这些发现证实了RsUGT在天麻素生产中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信