{"title":"Cyclic Alternating Pattern of EEG Activities and Heart Rate Variability in Parkinson's Disease Patients during Deep Sleep.","authors":"Zilin Cheng, Qi Li, Xueliang Zou, Zhijun Zhong, Qian Ouyang, Chunmei Gan, Fang Yi, Yaxing Luo, Yuhao Mao, Dongyuan Yao","doi":"10.31083/JIN26397","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sleep disturbance and autonomic dysfunction are often found in Parkinson's disease (PD) patients, but little is known about changes in cyclic alternating patterns (CAPs) of electroencephalographic (EEG) activities and heart rate variability (HRV) during deep sleep in PD patients.</p><p><strong>Objectives: </strong>To investigate changes in EEG activities and HRV during CAPs and non-CAPs (NCAPs) of N3 sleep in PD patients.</p><p><strong>Methods: </strong>Polysomnographic (PSG) examinations were carried out on 18 PD patients and 18 healthy controls, and power spectral analysis of EEG activities and HRV during CAPs and NCAPs (the segment of sleep without CAPs for more than 60 seconds) of N3 sleep were carried out.</p><p><strong>Results: </strong>The percentages of N3 sleep with CAPs and CAP A1, as well as the CAP A1 index in the PD patients, were significantly smaller compared with the healthy controls. In addition, the power of α waves in NCAPs was significantly higher, while the powers of δ waves in Phase A and B of CAP A1 and A3, and NCAPs were significantly smaller. Furthermore, the durations of total δ waves and δ waves with an amplitude ≥75 μV were significantly shorter, and the low frequency (LF) power of HRV during CAPs and the LF/high frequency (HF) HRV ratio during both CAPs and NCAPs were significantly smaller.</p><p><strong>Conclusions: </strong>The changes documented in EEG activities and HRV in PD patients during CAPs and NCAPs of N3 sleep compared with healthy controls suggest that N3 sleep quality and sympathetic function are compromised in PD patients.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 3","pages":"26397"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN26397","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sleep disturbance and autonomic dysfunction are often found in Parkinson's disease (PD) patients, but little is known about changes in cyclic alternating patterns (CAPs) of electroencephalographic (EEG) activities and heart rate variability (HRV) during deep sleep in PD patients.
Objectives: To investigate changes in EEG activities and HRV during CAPs and non-CAPs (NCAPs) of N3 sleep in PD patients.
Methods: Polysomnographic (PSG) examinations were carried out on 18 PD patients and 18 healthy controls, and power spectral analysis of EEG activities and HRV during CAPs and NCAPs (the segment of sleep without CAPs for more than 60 seconds) of N3 sleep were carried out.
Results: The percentages of N3 sleep with CAPs and CAP A1, as well as the CAP A1 index in the PD patients, were significantly smaller compared with the healthy controls. In addition, the power of α waves in NCAPs was significantly higher, while the powers of δ waves in Phase A and B of CAP A1 and A3, and NCAPs were significantly smaller. Furthermore, the durations of total δ waves and δ waves with an amplitude ≥75 μV were significantly shorter, and the low frequency (LF) power of HRV during CAPs and the LF/high frequency (HF) HRV ratio during both CAPs and NCAPs were significantly smaller.
Conclusions: The changes documented in EEG activities and HRV in PD patients during CAPs and NCAPs of N3 sleep compared with healthy controls suggest that N3 sleep quality and sympathetic function are compromised in PD patients.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.