Sensory nerve-secreted factors regulate basal keratinocyte function in vitro.

IF 2.2 4区 生物学 Q2 BIOLOGY
Integrative Organismal Biology Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.1093/iob/obaf009
A Srivastava, A Noble, S L Payne
{"title":"Sensory nerve-secreted factors regulate basal keratinocyte function <i>in vitro</i>.","authors":"A Srivastava, A Noble, S L Payne","doi":"10.1093/iob/obaf009","DOIUrl":null,"url":null,"abstract":"<p><p>Basal keratinocytes in the skin epidermis respond to microenvironmental signals during homeostatic maintenance of the skin and following injury by proliferating, migrating, and differentiating to restore the epidermal barrier. Injuries to the skin can result in non-healing wounds, characterized by prolonged inflammation, failure to close, and chronic pain. The skin is densely innervated by peripheral sensory nerves, which contribute to the wound repair response. Although it is known that nerves are important for successful wound healing, the underlying cellular mechanisms of this phenomenon, and particularly the role of nerves in directing keratinocyte re-epithelialization, are poorly understood. To explore the relationship between sensory nerves and keratinocyte function <i>in vitro</i>, we cultured keratinocytes with conditioned media collected from dorsal root ganglia (DRG) in both homeostatic and post-wounding conditions and found that keratinocyte migration, proliferation, and phenotype, functions essential for re-epithelialization, were modulated by DRG conditioned media. Using a proteomic approach, we characterized the secretome of cultured DRG and identified key factors essential for wound healing, including extracellular matrix proteins, growth factors, and metabolic factors involved with ATP production, which was correlated with alternations in keratinocyte metabolism when cultured in DRG conditioned medium. Our results advance our understanding of the microenvironmental cues that direct keratinocyte function during normal cellular turnover and cutaneous wound healing <i>in vitro</i>, helping to drive the development of therapeutics that target dysregulated re-epithelialization.</p>","PeriodicalId":13666,"journal":{"name":"Integrative Organismal Biology","volume":"7 1","pages":"obaf009"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Organismal Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/iob/obaf009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Basal keratinocytes in the skin epidermis respond to microenvironmental signals during homeostatic maintenance of the skin and following injury by proliferating, migrating, and differentiating to restore the epidermal barrier. Injuries to the skin can result in non-healing wounds, characterized by prolonged inflammation, failure to close, and chronic pain. The skin is densely innervated by peripheral sensory nerves, which contribute to the wound repair response. Although it is known that nerves are important for successful wound healing, the underlying cellular mechanisms of this phenomenon, and particularly the role of nerves in directing keratinocyte re-epithelialization, are poorly understood. To explore the relationship between sensory nerves and keratinocyte function in vitro, we cultured keratinocytes with conditioned media collected from dorsal root ganglia (DRG) in both homeostatic and post-wounding conditions and found that keratinocyte migration, proliferation, and phenotype, functions essential for re-epithelialization, were modulated by DRG conditioned media. Using a proteomic approach, we characterized the secretome of cultured DRG and identified key factors essential for wound healing, including extracellular matrix proteins, growth factors, and metabolic factors involved with ATP production, which was correlated with alternations in keratinocyte metabolism when cultured in DRG conditioned medium. Our results advance our understanding of the microenvironmental cues that direct keratinocyte function during normal cellular turnover and cutaneous wound healing in vitro, helping to drive the development of therapeutics that target dysregulated re-epithelialization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
6.70%
发文量
48
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信