Effect and Mechanism of Tricholoma matsutake Extract on UVA and UVB Radiation-Induced Skin Aging.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lu Hu, Zhenhai Huang, Jiyu Weng, Chujie Huang, Lanyue Zhang
{"title":"Effect and Mechanism of <i>Tricholoma matsutake</i> Extract on UVA and UVB Radiation-Induced Skin Aging.","authors":"Lu Hu, Zhenhai Huang, Jiyu Weng, Chujie Huang, Lanyue Zhang","doi":"10.4014/jmb.2411.11085","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet (UV) radiation often causes skin aging, inflammation, cancer and other related skin diseases. In this study, the main components of <i>Tricholoma matsutake</i> extract (TME) were identified using UPLC-Q-TOF-MS, and their anti-photoaging effects were assessed through UV-induced cell and animal models. The key components identified were D-mannitol (27.41%), DL-malic acid (14%), alginate (12.5%), isoleucine (4.82%), and phenylalanine (4.31%), all of which played roles in anti-aging and UV protection. TME (50-100 mg/ml) significantly alleviated UVA/UVB-induced erythema and wrinkles in mice. Pathological staining showed that TME suppressed UV-induced epidermal hyperplasia (<i>p</i> < 0.05), reduced collagen damage (<i>p</i> < 0.01), and decreased mast cell infiltration (<i>p</i> < 0.01), while down-regulating inflammatory markers such as IL-6, IL-1β, and TNF-α. TME also upregulated type I collagen (COL-1). Flow cytometry results demonstrated that high-dose TME inhibited UV-induced apoptosis and reduced reactive oxygen species (ROS) in HaCaT cells (<i>p</i> < 0.05). Immunofluorescence and scratch migration assays showed that TME promoted PPAR-α expression, reduced inflammation, and supported skin repair (<i>p</i> < 0.01). Transcriptomic and metabolomic analyses indicated that TME regulated inflammation-related signaling pathways, helping to prevent skin aging. TME is a promising natural product for skin care and treatment of oxidative stress and inflammation-related diseases.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2411085"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2411.11085","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet (UV) radiation often causes skin aging, inflammation, cancer and other related skin diseases. In this study, the main components of Tricholoma matsutake extract (TME) were identified using UPLC-Q-TOF-MS, and their anti-photoaging effects were assessed through UV-induced cell and animal models. The key components identified were D-mannitol (27.41%), DL-malic acid (14%), alginate (12.5%), isoleucine (4.82%), and phenylalanine (4.31%), all of which played roles in anti-aging and UV protection. TME (50-100 mg/ml) significantly alleviated UVA/UVB-induced erythema and wrinkles in mice. Pathological staining showed that TME suppressed UV-induced epidermal hyperplasia (p < 0.05), reduced collagen damage (p < 0.01), and decreased mast cell infiltration (p < 0.01), while down-regulating inflammatory markers such as IL-6, IL-1β, and TNF-α. TME also upregulated type I collagen (COL-1). Flow cytometry results demonstrated that high-dose TME inhibited UV-induced apoptosis and reduced reactive oxygen species (ROS) in HaCaT cells (p < 0.05). Immunofluorescence and scratch migration assays showed that TME promoted PPAR-α expression, reduced inflammation, and supported skin repair (p < 0.01). Transcriptomic and metabolomic analyses indicated that TME regulated inflammation-related signaling pathways, helping to prevent skin aging. TME is a promising natural product for skin care and treatment of oxidative stress and inflammation-related diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信