Jiale Chen, Jianjun Liu, Fangzhou Shu, Yong Du, Zhi Hong
{"title":"Merging of Accidental Bound States in the Continuum in Symmetry and Symmetry-Broken Terahertz Photonic Crystal Slabs.","authors":"Jiale Chen, Jianjun Liu, Fangzhou Shu, Yong Du, Zhi Hong","doi":"10.3390/nano15060451","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, the merging of accidental bound states in the continuum (BICs) has attracted significant attention due to the enhanced light-matter interactions. Here, we theoretically demonstrate the merging of accidental BICs in perturbed all-silicon terahertz photonic crystal (PhC) slabs with <i>C</i><sub>2</sub> and <i>C</i><sub>2</sub> broken-symmetry structures. The PhC slabs consist of an array of four cylindrical holes and support a TM symmetry protected (SP) vector BIC at the Γ point. Our results indicate that the merging and band transition of accidental BICs can be achieved by varying the diameter of diagonal holes in a <i>C</i><sub>2</sub>-symmetry structure. Notably, in a <i>C</i><sub>2</sub> broken-symmetry PhC slab, the SP BIC will first convert to a quasi-BIC, then transit to a new accidental BIC, which are well displayed and interpreted by tracing the accidental BICs in momentum space. We believe that the results presented in this work show potential for the design and application of BICs in both symmetric and asymmetric PhC slabs.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060451","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the merging of accidental bound states in the continuum (BICs) has attracted significant attention due to the enhanced light-matter interactions. Here, we theoretically demonstrate the merging of accidental BICs in perturbed all-silicon terahertz photonic crystal (PhC) slabs with C2 and C2 broken-symmetry structures. The PhC slabs consist of an array of four cylindrical holes and support a TM symmetry protected (SP) vector BIC at the Γ point. Our results indicate that the merging and band transition of accidental BICs can be achieved by varying the diameter of diagonal holes in a C2-symmetry structure. Notably, in a C2 broken-symmetry PhC slab, the SP BIC will first convert to a quasi-BIC, then transit to a new accidental BIC, which are well displayed and interpreted by tracing the accidental BICs in momentum space. We believe that the results presented in this work show potential for the design and application of BICs in both symmetric and asymmetric PhC slabs.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.