Variability Identification and Uncertainty Evolution Characteristic Analysis of Hydrological Variables in Anhui Province, China.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-03-14 DOI:10.3390/e27030305
Xia Bai, Jinhuang Yu, Yule Li, Juliang Jin, Chengguo Wu, Rongxing Zhou
{"title":"Variability Identification and Uncertainty Evolution Characteristic Analysis of Hydrological Variables in Anhui Province, China.","authors":"Xia Bai, Jinhuang Yu, Yule Li, Juliang Jin, Chengguo Wu, Rongxing Zhou","doi":"10.3390/e27030305","DOIUrl":null,"url":null,"abstract":"<p><p>Variability identification and uncertainty characteristic analysis, under the impacts of climate change and human activities, is beneficial for accurately predicting the future evolution trend of hydrological variables. In this study, based on the evolution trend and characteristic analyses of historical precipitation and temperature sequences from monthly, annual, and interannual scales through the Linear Tendency Rate (LTR) index, as well as its variability point identification using the M-K trend test method, we further utilized three cloud characteristic parameters comprising the average <i>Ex</i>, entropy <i>En</i>, and hyper-entropy <i>He</i> of the Cloud Model (CM) method to quantitatively reveal the uncertainty features corresponding to the diverse cloud distribution of precipitation and temperature sample scatters. And then, through an application analysis of the proposed research framework in Anhui Province, China, the following can be summarized from the application results: (1) The annual precipitation of Anhui Province presented a remarkable decreasing trend from south to north and an annual increasing trend from 1960 to 2020, especially in the southern area, with the LTR index equaling 55.87 mm/10a, and the annual average temperature of the entire provincial area also presented an obvious increasing trend from 1960 to 2020, with LTR equaling about 0.226 °C/10a. (2) The uncertainty characteristic of the precipitation series was evidently intensified after the variability points in 2013 and 2014 in the southern and provincial areas, respectively, according to the derived values of entropy <i>En</i> and hyper-entropy <i>He</i>, which are basically to the contrary for the historical annual average temperature series in southern Anhui Province. (3) The obtained result was basically consistent with the practical statistics of historical hydrological and disaster data, indicating that the proposed research methodologies can be further applied in related variability diagnosis analyses of non-stationary hydrological variables.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030305","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Variability identification and uncertainty characteristic analysis, under the impacts of climate change and human activities, is beneficial for accurately predicting the future evolution trend of hydrological variables. In this study, based on the evolution trend and characteristic analyses of historical precipitation and temperature sequences from monthly, annual, and interannual scales through the Linear Tendency Rate (LTR) index, as well as its variability point identification using the M-K trend test method, we further utilized three cloud characteristic parameters comprising the average Ex, entropy En, and hyper-entropy He of the Cloud Model (CM) method to quantitatively reveal the uncertainty features corresponding to the diverse cloud distribution of precipitation and temperature sample scatters. And then, through an application analysis of the proposed research framework in Anhui Province, China, the following can be summarized from the application results: (1) The annual precipitation of Anhui Province presented a remarkable decreasing trend from south to north and an annual increasing trend from 1960 to 2020, especially in the southern area, with the LTR index equaling 55.87 mm/10a, and the annual average temperature of the entire provincial area also presented an obvious increasing trend from 1960 to 2020, with LTR equaling about 0.226 °C/10a. (2) The uncertainty characteristic of the precipitation series was evidently intensified after the variability points in 2013 and 2014 in the southern and provincial areas, respectively, according to the derived values of entropy En and hyper-entropy He, which are basically to the contrary for the historical annual average temperature series in southern Anhui Province. (3) The obtained result was basically consistent with the practical statistics of historical hydrological and disaster data, indicating that the proposed research methodologies can be further applied in related variability diagnosis analyses of non-stationary hydrological variables.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信