Synchronization of Kuromoto Oscillators on Simplicial Complexes: Hysteresis, Cluster Formation and Partial Synchronization.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-24 DOI:10.3390/e27030233
Samir Sahoo, Neelima Gupte
{"title":"Synchronization of Kuromoto Oscillators on Simplicial Complexes: Hysteresis, Cluster Formation and Partial Synchronization.","authors":"Samir Sahoo, Neelima Gupte","doi":"10.3390/e27030233","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of the synchronization of oscillator systems based on simplicial complexes presents some interesting features. The transition to synchronization can be abrupt or smooth depending on the substrate, the frequency distribution of the oscillators and the initial distribution of the phase angles. Both partial and complete synchronization can be seen as quantified by the order parameter. The addition of interactions of a higher order than the usual pairwise ones can modify these features further, especially when the interactions tend to have the opposite signs. Cluster synchronization is seen on sparse lattices and depends on the spectral dimension and whether the networks are mixed, sparse or compact. Topological effects and the geometry of shared faces are important and affect the synchronization patterns. We identify and analyze factors, such as frustration, that lead to these effects. We note that these features can be observed in realistic systems such as nanomaterials and the brain connectome.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030233","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of the synchronization of oscillator systems based on simplicial complexes presents some interesting features. The transition to synchronization can be abrupt or smooth depending on the substrate, the frequency distribution of the oscillators and the initial distribution of the phase angles. Both partial and complete synchronization can be seen as quantified by the order parameter. The addition of interactions of a higher order than the usual pairwise ones can modify these features further, especially when the interactions tend to have the opposite signs. Cluster synchronization is seen on sparse lattices and depends on the spectral dimension and whether the networks are mixed, sparse or compact. Topological effects and the geometry of shared faces are important and affect the synchronization patterns. We identify and analyze factors, such as frustration, that lead to these effects. We note that these features can be observed in realistic systems such as nanomaterials and the brain connectome.

基于简单复数的振荡器系统同步分析呈现出一些有趣的特征。同步过渡可以是突然的,也可以是平滑的,这取决于基质、振荡器的频率分布和相位角的初始分布。部分同步和完全同步都可以通过阶次参数来量化。加入比通常的成对相互作用更高阶的相互作用会进一步改变这些特征,尤其是当相互作用的符号趋于相反时。集群同步出现在稀疏网格上,取决于频谱维度以及网络是混合型、稀疏型还是紧凑型。拓扑效应和共享面的几何形状非常重要,会影响同步模式。我们识别并分析了导致这些效应的因素,如挫折。我们注意到,这些特征可以在纳米材料和大脑连接体等现实系统中观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信