Effects of cold and methyl jasmonate on the expression of miRNAs and target genes in response to vernalisation in two wheat cultivars (Triticum aestivum L.).

IF 2.7 4区 生物学 Q2 PLANT SCIENCES
Nooshin Ashoori, Reza Fotovat, Ehsan MohseniFard
{"title":"Effects of cold and methyl jasmonate on the expression of miRNAs and target genes in response to vernalisation in two wheat cultivars (<i>Triticum aestivum</i> L.).","authors":"Nooshin Ashoori, Reza Fotovat, Ehsan MohseniFard","doi":"10.1071/FP24130","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat undergoes significant physiological changes during winter, driven by processes such as cold acclimation and vernalisation that are regulated by gene expression and phytohormones. We investigate the effects of methyl jasmonate (MeJA) and cold treatments on the expression of three specific miRNAs and the associated target genes in Baz spring wheat and Norstar winter wheat using qRT-PCR analysis. Our objective was to examine the impact of MeJA on vernalisation and cold adaptation in these genotypes. Results showed that MeJA had no significant impact on vernalisation and acclimation in Baz, while the compound decreased these traits in Norstar. Additionally, the expression of miRNAs in Norstar was significantly reduced after a 2-day cold treatment, particularly for miR156 and further reduced after 14days for miR172 and miR319 . In contrast, Baz showed varied gene expression responses, with an increase in miRNA levels after the 14-day cold treatment. MeJA combined with a 2-day cold treatment suppressed the expression of SPL , AP2 and MYB3 target genes, with the most pronounced suppression observed in SPL . However, AP2 was induced after 14-day cold treatment in both cultivars. The study highlighted an inverse relationship between miRNAs and target genes under vernalisation conditions, underscoring the complex regulatory interactions between genotype, miRNAs and the associated target genes. Therefore, these findings provide new insights into how MeJA and cold treatments modulate miRNA and gene expression, enhancing our understanding of wheat's adaptive response mechanisms.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24130","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat undergoes significant physiological changes during winter, driven by processes such as cold acclimation and vernalisation that are regulated by gene expression and phytohormones. We investigate the effects of methyl jasmonate (MeJA) and cold treatments on the expression of three specific miRNAs and the associated target genes in Baz spring wheat and Norstar winter wheat using qRT-PCR analysis. Our objective was to examine the impact of MeJA on vernalisation and cold adaptation in these genotypes. Results showed that MeJA had no significant impact on vernalisation and acclimation in Baz, while the compound decreased these traits in Norstar. Additionally, the expression of miRNAs in Norstar was significantly reduced after a 2-day cold treatment, particularly for miR156 and further reduced after 14days for miR172 and miR319 . In contrast, Baz showed varied gene expression responses, with an increase in miRNA levels after the 14-day cold treatment. MeJA combined with a 2-day cold treatment suppressed the expression of SPL , AP2 and MYB3 target genes, with the most pronounced suppression observed in SPL . However, AP2 was induced after 14-day cold treatment in both cultivars. The study highlighted an inverse relationship between miRNAs and target genes under vernalisation conditions, underscoring the complex regulatory interactions between genotype, miRNAs and the associated target genes. Therefore, these findings provide new insights into how MeJA and cold treatments modulate miRNA and gene expression, enhancing our understanding of wheat's adaptive response mechanisms.

低温和茉莉酸甲酯对小麦春化反应中mirna和靶基因表达的影响
小麦在冬季经历了显著的生理变化,受基因表达和植物激素调控的冷驯化和春化等过程的驱动。采用qRT-PCR方法研究了茉莉酸甲酯(MeJA)和冷处理对Baz春小麦和Norstar冬小麦3种特异性mirna及其相关靶基因表达的影响。我们的目的是研究MeJA对这些基因型的春化和冷适应的影响。结果表明,MeJA对Baz的春化和驯化无显著影响,而化合物对Norstar的春化和驯化有显著影响。此外,低温处理2天后,Norstar中mirna的表达显著降低,尤其是miR156, 14天后miR172和miR319的表达进一步降低。相比之下,Baz表现出不同的基因表达反应,在14天的冷处理后miRNA水平增加。MeJA联合2 d冷处理抑制了SPL、AP2和MYB3靶基因的表达,其中以SPL的抑制最为明显。而AP2在低温处理14 d后诱导。该研究强调了春化条件下miRNAs和靶基因之间的反比关系,强调了基因型、miRNAs和相关靶基因之间复杂的调控相互作用。因此,这些发现为MeJA和冷处理如何调节miRNA和基因表达提供了新的见解,增强了我们对小麦适应性反应机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信