Improvement of the three-dimensional electrochemical degradation of amoxicillin using Co3O4/GAC as both particle electrode and catalyst for peroxymonosulfate activation.
Jinsong Ma, Songchol Hyon, Sunghyok Kim, Tong Chol Ri
{"title":"Improvement of the three-dimensional electrochemical degradation of amoxicillin using Co<sub>3</sub>O<sub>4</sub>/GAC as both particle electrode and catalyst for peroxymonosulfate activation.","authors":"Jinsong Ma, Songchol Hyon, Sunghyok Kim, Tong Chol Ri","doi":"10.1080/09593330.2024.2447961","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel three-dimensional (3D) electrode system (3D-Co<sub>3</sub>O<sub>4</sub>/GAC-PMS) was constructed that can effectively degrade amoxicillin (AMX) in aqueous solution using granular activated carbon (GAC) loaded with Co<sub>3</sub>O<sub>4</sub> catalyst (Co<sub>3</sub>O<sub>4</sub>/GAC) as a catalyst for the activation of peroxymonosulfate (PMS) as well as particle electrode. The effects of the main operating parameters on AMX degradation, TOC removal, electrical energy consumption and current efficiency were investigated. Under the optimum operating conditions (initial solution pH of 5.9, PMS concentration of 13 mmol/L, current density of 5.6 mA/cm<sup>2</sup>), 99.9% of AMX was degraded after 10 min of treatment and 96.8% of TOC was removed after 120 min of treatment. Meanwhile, the electrical energy consumption of the system was very small, only 45.1 kWh/kg TOC. Comparative experiments with other systems and kinetic analysis have confirmed the superior performance of the 3D-Co<sub>3</sub>O<sub>4</sub>/GAC-PMS system for the degradation of AMX. During five cycles, the Co<sub>3</sub>O<sub>4</sub>/GAC particle electrode showed excellent stability and long lifetime. The 3D-Co<sub>3</sub>O<sub>4</sub>/GAC-PMS system simultaneously degraded 100% of three different pharmaceuticals (amoxicillin, ciprofloxacin and acetaminophen) after 8 min of reaction and removed 88.1% TOC after 120 min of reaction, which suggested the applicability of the system for real wastewater treatment. The degradation of AMX was confirmed using UV-Vis spectroscopy and the reaction mechanism of the 3D-Co<sub>3</sub>O<sub>4</sub>/GAC-PMS system was proposed. Based on the intermediates detected by ultra-high pressure liquid chromatograph coupled with quadrupole time-of-flight mass-spectrometry, the degradation pathways of AMX in the 3D-Co<sub>3</sub>O<sub>4</sub>/GAC-PMS system were presented.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-19"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2447961","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel three-dimensional (3D) electrode system (3D-Co3O4/GAC-PMS) was constructed that can effectively degrade amoxicillin (AMX) in aqueous solution using granular activated carbon (GAC) loaded with Co3O4 catalyst (Co3O4/GAC) as a catalyst for the activation of peroxymonosulfate (PMS) as well as particle electrode. The effects of the main operating parameters on AMX degradation, TOC removal, electrical energy consumption and current efficiency were investigated. Under the optimum operating conditions (initial solution pH of 5.9, PMS concentration of 13 mmol/L, current density of 5.6 mA/cm2), 99.9% of AMX was degraded after 10 min of treatment and 96.8% of TOC was removed after 120 min of treatment. Meanwhile, the electrical energy consumption of the system was very small, only 45.1 kWh/kg TOC. Comparative experiments with other systems and kinetic analysis have confirmed the superior performance of the 3D-Co3O4/GAC-PMS system for the degradation of AMX. During five cycles, the Co3O4/GAC particle electrode showed excellent stability and long lifetime. The 3D-Co3O4/GAC-PMS system simultaneously degraded 100% of three different pharmaceuticals (amoxicillin, ciprofloxacin and acetaminophen) after 8 min of reaction and removed 88.1% TOC after 120 min of reaction, which suggested the applicability of the system for real wastewater treatment. The degradation of AMX was confirmed using UV-Vis spectroscopy and the reaction mechanism of the 3D-Co3O4/GAC-PMS system was proposed. Based on the intermediates detected by ultra-high pressure liquid chromatograph coupled with quadrupole time-of-flight mass-spectrometry, the degradation pathways of AMX in the 3D-Co3O4/GAC-PMS system were presented.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current