Martin Mittelbach, Rafael F Schaefer, Matthieu Bloch, Aylin Yener, Onur Günlü
{"title":"Sensing-Assisted Secure Communications over Correlated Rayleigh Fading Channels.","authors":"Martin Mittelbach, Rafael F Schaefer, Matthieu Bloch, Aylin Yener, Onur Günlü","doi":"10.3390/e27030225","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a secure integrated sensing and communication (ISAC) scenario, where a signal is transmitted through a state-dependent wiretap channel with one legitimate receiver with which the transmitter communicates and one honest-but-curious target that the transmitter wants to sense. The secure ISAC channel is modeled as two state-dependent fast-fading channels with correlated Rayleigh fading coefficients and independent additive Gaussian noise components. Delayed channel outputs are fed back to the transmitter to improve the communication performance and to estimate the channel state sequence. We establish and illustrate an achievable secrecy-distortion region for degraded secure ISAC channels under correlated Rayleigh fading, for which we show that the signal-to-interference-plus-noise is not a sufficient statistic. We also evaluate the inner bound for a large set of parameters to derive practical design insights. The presented results include parameter ranges for which the secrecy capacity of a classical wiretap channel setup is surpassed and for which the channel capacity is approached. Thus, we illustrate for correlated Rayleigh fading cases that our secure ISAC methods can (i) eliminate the need for the legitimate receiver to have a statistical advantage over the eavesdropper and (ii) provide communication security with minimal rate penalty.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030225","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a secure integrated sensing and communication (ISAC) scenario, where a signal is transmitted through a state-dependent wiretap channel with one legitimate receiver with which the transmitter communicates and one honest-but-curious target that the transmitter wants to sense. The secure ISAC channel is modeled as two state-dependent fast-fading channels with correlated Rayleigh fading coefficients and independent additive Gaussian noise components. Delayed channel outputs are fed back to the transmitter to improve the communication performance and to estimate the channel state sequence. We establish and illustrate an achievable secrecy-distortion region for degraded secure ISAC channels under correlated Rayleigh fading, for which we show that the signal-to-interference-plus-noise is not a sufficient statistic. We also evaluate the inner bound for a large set of parameters to derive practical design insights. The presented results include parameter ranges for which the secrecy capacity of a classical wiretap channel setup is surpassed and for which the channel capacity is approached. Thus, we illustrate for correlated Rayleigh fading cases that our secure ISAC methods can (i) eliminate the need for the legitimate receiver to have a statistical advantage over the eavesdropper and (ii) provide communication security with minimal rate penalty.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.