Charles Pillet, Ilshat Sagitov, Alexios Balatsoukas-Stimming, Pascal Giard
{"title":"Restart Mechanisms for the Successive-Cancellation List-Flip Decoding of Polar Codes.","authors":"Charles Pillet, Ilshat Sagitov, Alexios Balatsoukas-Stimming, Pascal Giard","doi":"10.3390/e27030309","DOIUrl":null,"url":null,"abstract":"<p><p>Polar codes concatenated with a cyclic redundancy check (CRC) code have been selected in the 5G standard with the successive-cancellation list (SCL) of list size L = 8 as the baseline algorithm. Despite providing great error-correction performance, a large list size increases the hardware complexity of the SCL decoder. Alternatively, flip decoding algorithms were proposed to improve the error-correction performance with a low-complexity hardware implementation. The combination of list and flip algorithms, the successive-cancellation list flip (SCLF) and dynamic SCLF (DSCLF) algorithms, provides error-correction performance close to SCL-32 with a list size L = 2 and Tmax = 300 maximum additional trials. However, these decoders have a variable execution time, a characteristic that poses a challenge to some practical applications. In this work, we propose a restart mechanism for list-flip algorithms that allows us to skip parts of the decoding computations without affecting the error-correction performance. We show that the restart location cannot realistically be allowed to occur at any location in a codeword as it would lead to an unreasonable memory overhead under DSCLF. Hence, we propose a mechanism where the possible restart locations are limited to a set and propose various construction methods for that set. The construction methods are compared, and the tradeoffs are discussed. For a polar code of length N = 1024 and rate ¼, under DSCLF decoding with a list size L = 2 and a maximum number of trials Tmax = 300, our proposed approach is shown to reduce the average execution time by 41.7% with four restart locations at the cost of approximately 1.5% in memory overhead.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030309","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polar codes concatenated with a cyclic redundancy check (CRC) code have been selected in the 5G standard with the successive-cancellation list (SCL) of list size L = 8 as the baseline algorithm. Despite providing great error-correction performance, a large list size increases the hardware complexity of the SCL decoder. Alternatively, flip decoding algorithms were proposed to improve the error-correction performance with a low-complexity hardware implementation. The combination of list and flip algorithms, the successive-cancellation list flip (SCLF) and dynamic SCLF (DSCLF) algorithms, provides error-correction performance close to SCL-32 with a list size L = 2 and Tmax = 300 maximum additional trials. However, these decoders have a variable execution time, a characteristic that poses a challenge to some practical applications. In this work, we propose a restart mechanism for list-flip algorithms that allows us to skip parts of the decoding computations without affecting the error-correction performance. We show that the restart location cannot realistically be allowed to occur at any location in a codeword as it would lead to an unreasonable memory overhead under DSCLF. Hence, we propose a mechanism where the possible restart locations are limited to a set and propose various construction methods for that set. The construction methods are compared, and the tradeoffs are discussed. For a polar code of length N = 1024 and rate ¼, under DSCLF decoding with a list size L = 2 and a maximum number of trials Tmax = 300, our proposed approach is shown to reduce the average execution time by 41.7% with four restart locations at the cost of approximately 1.5% in memory overhead.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.