{"title":"Emergence of Classical Random Walk from Non-Hermitian Effects in Quantum Kicked Rotor.","authors":"Wenxuan Song, Jiaming Zhang, Lihao Hua, Zhihua Xiong, Wenlei Zhao","doi":"10.3390/e27030288","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the quantum random walk in momentum space of a spinor kicked rotor with a non-Hermitian kicking potential. We find that the variance in momentum distributions transitions from quadratic to linear growth over time for the non-Hermitian case. Correspondingly, the momentum distributions are in the shape of Gaussian wavepackets, providing clear evidence of a classical random walk induced by the non-Hermitian-driven potential. Remarkably, the rate of the linear growth of the variance diverges as the non-Hermitian parameter approaches zero. In the Hermitian case, deviations from the quantum resonance condition dramatically suppress the quadratic growth of the variance, leading to dynamical localization of the quantum walk. Under such quantum non-resonance conditions, the classical random walk is significantly reduced by the non-Hermitian-driven potential. Interestingly, non-Hermiticity enhances quantum entanglement between internal degrees of freedom, while deviations from the quantum resonance condition reduce it. Possible applications of our findings are discussed.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030288","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the quantum random walk in momentum space of a spinor kicked rotor with a non-Hermitian kicking potential. We find that the variance in momentum distributions transitions from quadratic to linear growth over time for the non-Hermitian case. Correspondingly, the momentum distributions are in the shape of Gaussian wavepackets, providing clear evidence of a classical random walk induced by the non-Hermitian-driven potential. Remarkably, the rate of the linear growth of the variance diverges as the non-Hermitian parameter approaches zero. In the Hermitian case, deviations from the quantum resonance condition dramatically suppress the quadratic growth of the variance, leading to dynamical localization of the quantum walk. Under such quantum non-resonance conditions, the classical random walk is significantly reduced by the non-Hermitian-driven potential. Interestingly, non-Hermiticity enhances quantum entanglement between internal degrees of freedom, while deviations from the quantum resonance condition reduce it. Possible applications of our findings are discussed.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.