{"title":"DeeWaNA: An Unsupervised Network Representation Learning Framework Integrating Deepwalk and Neighborhood Aggregation for Node Classification.","authors":"Xin Xu, Xinya Lu, Jianan Wang","doi":"10.3390/e27030322","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces DeeWaNA, an unsupervised network representation learning framework that unifies random walk strategies and neighborhood aggregation mechanisms to improve node classification performance. Unlike existing methods that treat these two paradigms separately, our approach integrates them into a cohesive model, addressing limitations in structural feature extraction and neighborhood relationship modeling. DeeWaNA first leverages DeepWalk to capture global structural information and then employs an attention-based weighting mechanism to refine neighborhood relationships through a novel distance metric. Finally, a weighted aggregation operator fuses these representations into a unified low-dimensional space. By bridging the gap between random-walk-based and neural-network-based techniques, our framework enhances representation quality and improves classification accuracy. Extensive evaluations on real-world networks demonstrate that DeeWaNA outperforms four widely used unsupervised network representation learning methods, underscoring its effectiveness and broader applicability.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030322","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces DeeWaNA, an unsupervised network representation learning framework that unifies random walk strategies and neighborhood aggregation mechanisms to improve node classification performance. Unlike existing methods that treat these two paradigms separately, our approach integrates them into a cohesive model, addressing limitations in structural feature extraction and neighborhood relationship modeling. DeeWaNA first leverages DeepWalk to capture global structural information and then employs an attention-based weighting mechanism to refine neighborhood relationships through a novel distance metric. Finally, a weighted aggregation operator fuses these representations into a unified low-dimensional space. By bridging the gap between random-walk-based and neural-network-based techniques, our framework enhances representation quality and improves classification accuracy. Extensive evaluations on real-world networks demonstrate that DeeWaNA outperforms four widely used unsupervised network representation learning methods, underscoring its effectiveness and broader applicability.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.