Optimal Power Procurement for Green Cellular Wireless Networks Under Uncertainty and Chance Constraints.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-03-14 DOI:10.3390/e27030308
Nadhir Ben Rached, Shyam Mohan Subbiah Pillai, Raúl Tempone
{"title":"Optimal Power Procurement for Green Cellular Wireless Networks Under Uncertainty and Chance Constraints.","authors":"Nadhir Ben Rached, Shyam Mohan Subbiah Pillai, Raúl Tempone","doi":"10.3390/e27030308","DOIUrl":null,"url":null,"abstract":"<p><p>Given the increasing global emphasis on sustainable energy usage and the rising energy demands of cellular wireless networks, this work seeks an optimal short-term, continuous-time power-procurement schedule to minimize operating expenditure and the carbon footprint of cellular wireless networks equipped with energy-storage capacity, and hybrid energy systems comprising uncertain renewable energy sources. Despite the stochastic nature of wireless fading channels, the network operator must ensure a certain quality-of-service (QoS) constraint with high probability. This probabilistic constraint prevents using the dynamic programming principle to solve the stochastic optimal control problem. This work introduces a novel time-continuous Lagrangian relaxation approach tailored for real-time, near-optimal energy procurement in cellular networks, overcoming tractability problems associated with the probabilistic QoS constraint. The numerical solution procedure includes an efficient upwind finite-difference solver for the Hamilton-Jacobi-Bellman equation corresponding to the relaxed problem, and an effective combination of the limited memory bundle method (LMBM) for handling nonsmooth optimization and the stochastic subgradient method (SSM) to navigate the stochasticity of the dual problem. Numerical results, based on the German power system and daily cellular traffic data, demonstrate the computational efficiency of the proposed numerical approach, providing a near-optimal policy in a practical timeframe.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030308","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given the increasing global emphasis on sustainable energy usage and the rising energy demands of cellular wireless networks, this work seeks an optimal short-term, continuous-time power-procurement schedule to minimize operating expenditure and the carbon footprint of cellular wireless networks equipped with energy-storage capacity, and hybrid energy systems comprising uncertain renewable energy sources. Despite the stochastic nature of wireless fading channels, the network operator must ensure a certain quality-of-service (QoS) constraint with high probability. This probabilistic constraint prevents using the dynamic programming principle to solve the stochastic optimal control problem. This work introduces a novel time-continuous Lagrangian relaxation approach tailored for real-time, near-optimal energy procurement in cellular networks, overcoming tractability problems associated with the probabilistic QoS constraint. The numerical solution procedure includes an efficient upwind finite-difference solver for the Hamilton-Jacobi-Bellman equation corresponding to the relaxed problem, and an effective combination of the limited memory bundle method (LMBM) for handling nonsmooth optimization and the stochastic subgradient method (SSM) to navigate the stochasticity of the dual problem. Numerical results, based on the German power system and daily cellular traffic data, demonstrate the computational efficiency of the proposed numerical approach, providing a near-optimal policy in a practical timeframe.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信