Reza Reiazi, Surendra Prajapati, Leonardo Che Fru, Dongyeon Lee, Mohammad Salehpour
{"title":"Do We Need to Add the Type of Treatment Planning System, Dose Calculation Grid Size, and CT Density Curve to Predictive Models?","authors":"Reza Reiazi, Surendra Prajapati, Leonardo Che Fru, Dongyeon Lee, Mohammad Salehpour","doi":"10.3390/diagnostics15060786","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Generalizability and domain dependency are critical challenges in developing predictive models for healthcare, particularly in medical diagnostics and radiation oncology. Predictive models designed to assess tumor recurrence rely on comprehensive and high-quality datasets, encompassing treatment planning parameters, imaging protocols, and patient-specific data. However, domain dependency, arising from variations in dose calculation algorithms, computed tomography (CT) density conversion curves, imaging modalities, and institutional protocols, can significantly undermine model reliability and clinical utility. <b>Methods:</b> This study evaluated dose calculation differences in the head and neck cancer treatment plans of 19 patients using two treatment planning systems, Pinnacle 9.10 and RayStation 11, with similar dose calculation algorithms. Variations in the dose grid size and CT density conversion curves were assessed for their impact on domain dependency. <b>Results:</b> Results showed that dose grid size differences had a more significant influence within RayStation than Pinnacle, while CT curve variations introduced potential domain discrepancies. The findings underscore the critical role of precise and standardized treatment planning in enhancing the reliability of predictive modeling for tumor recurrence assessment. <b>Conclusions:</b> Incorporating treatment planning parameters, such as dose distribution and target volumes, as explicit features in model training can mitigate the impact of domain dependency and enhance prediction accuracy. Solutions such as multi-institutional data harmonization and domain adaptation techniques are essential to improve model generalizability and robustness. These strategies support the better integration of predictive modeling into clinical workflows, ultimately optimizing patient outcomes and personalized treatment strategies.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060786","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Generalizability and domain dependency are critical challenges in developing predictive models for healthcare, particularly in medical diagnostics and radiation oncology. Predictive models designed to assess tumor recurrence rely on comprehensive and high-quality datasets, encompassing treatment planning parameters, imaging protocols, and patient-specific data. However, domain dependency, arising from variations in dose calculation algorithms, computed tomography (CT) density conversion curves, imaging modalities, and institutional protocols, can significantly undermine model reliability and clinical utility. Methods: This study evaluated dose calculation differences in the head and neck cancer treatment plans of 19 patients using two treatment planning systems, Pinnacle 9.10 and RayStation 11, with similar dose calculation algorithms. Variations in the dose grid size and CT density conversion curves were assessed for their impact on domain dependency. Results: Results showed that dose grid size differences had a more significant influence within RayStation than Pinnacle, while CT curve variations introduced potential domain discrepancies. The findings underscore the critical role of precise and standardized treatment planning in enhancing the reliability of predictive modeling for tumor recurrence assessment. Conclusions: Incorporating treatment planning parameters, such as dose distribution and target volumes, as explicit features in model training can mitigate the impact of domain dependency and enhance prediction accuracy. Solutions such as multi-institutional data harmonization and domain adaptation techniques are essential to improve model generalizability and robustness. These strategies support the better integration of predictive modeling into clinical workflows, ultimately optimizing patient outcomes and personalized treatment strategies.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.