Numerical Evaluation of Abdominal Aortic Aneurysms Utilizing Finite Element Method.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Konstantinos Kyparissis, Nikolaos Kladovasilakis, Maria-Styliani Daraki, Anastasios Raptis, Polyzois Tsantrizos, Konstantinos Moulakakis, John Kakisis, Christos Manopoulos, Georgios E Stavroulakis
{"title":"Numerical Evaluation of Abdominal Aortic Aneurysms Utilizing Finite Element Method.","authors":"Konstantinos Kyparissis, Nikolaos Kladovasilakis, Maria-Styliani Daraki, Anastasios Raptis, Polyzois Tsantrizos, Konstantinos Moulakakis, John Kakisis, Christos Manopoulos, Georgios E Stavroulakis","doi":"10.3390/diagnostics15060697","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> In recent years, more and more numerical tools have been utilized in medicine in or-der to assist the evaluation and decision-making processes for complex clinical cases. Towards this direction, Finite Element Models (FEMs) have emerged as a pivotal tool in medical research, particularly in simulating and understanding the complex fluid and structural behaviors of the circulatory system. Furthermore, this tool can be used for the calculation of certain risks regarding the function of the blood vessels. <b>Methods:</b> The current study developed a computational tool utilizing the finite element method in order to numerically evaluate stresses in aortas with abdominal aneurysms and provide the necessary data for the creation of a patient-specific digital twin of an aorta. More specifically, 12 different cases of aortas with abdominal aneurysms were examined and evaluated. <b>Results:</b> The first step was the 3D reconstruction of the aortas trans-forming the DICOM file into 3D surface models. Then, a finite element material model was developed simulating accurately the mechanical behavior of aortic walls. <b>Conclusions:</b> Through the results of these finite element analyses the values of tension, strain, and displacement were quantified and a rapid risk assessment was provided revealing that larger aneurysmatic regions elevate the risk of aortic rupture with some cases reaching an above 90% risk.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060697","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In recent years, more and more numerical tools have been utilized in medicine in or-der to assist the evaluation and decision-making processes for complex clinical cases. Towards this direction, Finite Element Models (FEMs) have emerged as a pivotal tool in medical research, particularly in simulating and understanding the complex fluid and structural behaviors of the circulatory system. Furthermore, this tool can be used for the calculation of certain risks regarding the function of the blood vessels. Methods: The current study developed a computational tool utilizing the finite element method in order to numerically evaluate stresses in aortas with abdominal aneurysms and provide the necessary data for the creation of a patient-specific digital twin of an aorta. More specifically, 12 different cases of aortas with abdominal aneurysms were examined and evaluated. Results: The first step was the 3D reconstruction of the aortas trans-forming the DICOM file into 3D surface models. Then, a finite element material model was developed simulating accurately the mechanical behavior of aortic walls. Conclusions: Through the results of these finite element analyses the values of tension, strain, and displacement were quantified and a rapid risk assessment was provided revealing that larger aneurysmatic regions elevate the risk of aortic rupture with some cases reaching an above 90% risk.

背景:近年来,越来越多的数字工具被应用于医学领域,以协助复杂临床病例的评估和决策过程。朝着这个方向,有限元模型(FEM)已成为医学研究中的重要工具,特别是在模拟和理解循环系统复杂的流体和结构行为方面。此外,该工具还可用于计算有关血管功能的某些风险。方法:目前的研究利用有限元法开发了一种计算工具,以便对患有腹主动脉瘤的主动脉进行应力数值评估,并为创建患者特异性主动脉数字孪生提供必要的数据。具体而言,我们对 12 例不同的腹主动脉瘤患者进行了检查和评估。结果第一步是对主动脉进行三维重建,将 DICOM 文件转换成三维表面模型。然后,建立有限元材料模型,精确模拟主动脉壁的机械行为。得出结论:通过这些有限元分析的结果,对张力、应变和位移值进行了量化,并提供了快速风险评估,显示动脉瘤区域越大,主动脉破裂的风险越高,有些病例的风险高达 90% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信