An Improved GAS Algorithm.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-26 DOI:10.3390/e27030240
Zhijian Wang, Yuchen He, Tian Luan, Yong Long
{"title":"An Improved GAS Algorithm.","authors":"Zhijian Wang, Yuchen He, Tian Luan, Yong Long","doi":"10.3390/e27030240","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces an improved Grover Adaptive Search (GAS) algorithm. The GAS algorithm has been prove to achieve quadratic acceleration in the Constrained Polynomial Binary Optimization (CPBO) problem. Nevertheless, the acceleration effect of the GAS algorithm can be decreased by the poor threshold selection. This article uses the Quantum Approximate Optimization Algorithm (QAOA) to improve the initial threshold selection, thereby accelerating the convergence speed of the original GAS algorithm. The acceleration effect of the improved GAS algorithm is presented by the Max-Cut problem and the CPBO problem.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030240","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an improved Grover Adaptive Search (GAS) algorithm. The GAS algorithm has been prove to achieve quadratic acceleration in the Constrained Polynomial Binary Optimization (CPBO) problem. Nevertheless, the acceleration effect of the GAS algorithm can be decreased by the poor threshold selection. This article uses the Quantum Approximate Optimization Algorithm (QAOA) to improve the initial threshold selection, thereby accelerating the convergence speed of the original GAS algorithm. The acceleration effect of the improved GAS algorithm is presented by the Max-Cut problem and the CPBO problem.

本文介绍了一种改进的格罗弗自适应搜索(GAS)算法。事实证明,GAS 算法能在受约束多项式二元优化(CPBO)问题中实现二次加速。然而,GAS 算法的加速效果会因阈值选择不当而降低。本文利用量子近似优化算法(QAOA)改进了初始阈值选择,从而加快了原始 GAS 算法的收敛速度。通过 Max-Cut 问题和 CPBO 问题展示了改进的 GAS 算法的加速效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信