Exploring the mechanism of Epimedium in treating diabetic nephropathy based on network pharmacology and experimental validation study.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-06-01 Epub Date: 2025-03-25 DOI:10.1007/s10616-025-00748-0
Leyu Huang, Hui Li, Ying Han
{"title":"Exploring the mechanism of <i>Epimedium</i> in treating diabetic nephropathy based on network pharmacology and experimental validation study.","authors":"Leyu Huang, Hui Li, Ying Han","doi":"10.1007/s10616-025-00748-0","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by chronic inflammation, metabolic disturbances, and progressive renal damage. Natural perennial herb, such as <i>Epimedium</i>, has shown potential therapeutic effects on DN, but its underlying mechanisms remain unclear. This study aimed to explore the pharmacological mechanisms of <i>Epimedium</i> in the treatment of DN through network pharmacology, molecular docking, and experimental validation. Active components of <i>Epimedium</i> were identified using TCMSP and SwissTargetPrediction databases, while DN-related targets were retrieved from GeneCards, DisGeNET, OMIM, and TTD databases. Overlapping targets were analyzed via PPI network and Cytoscape's cytoHubba plugin to identify hub genes. GO and KEGG enrichment analyses were conducted to explore functional pathways. Molecular docking validated the binding affinity between key targets and active components. Finally, high-glucose-induced HK-2 cell injury models were used to verify the protective effects of <i>Epimedium</i> through RT-qPCR, western blotting, and mitochondrial function assays. A total of 224 overlapping targets were identified, with <i>AKT1, TNF, HSP90AA1</i>, and <i>SRC</i> serving as key hub genes. GO and KEGG analyses revealed significant enrichment in pathways such as the PI3K-Akt signaling pathway and lipid metabolism. Molecular docking demonstrated strong interactions between <i>Epimedium</i> components and hub targets. Experimental validation showed that <i>Epimedium</i> restored nephrin and WT1 protein levels, mitigated mitochondrial dysfunction, and reversed high-glucose-induced overexpression of key targets. <i>Epimedium</i> exerts therapeutic effects on DN through multi-target interactions, primarily via the PI3K-Akt pathway, highlighting its potential as a novel treatment for DN.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00748-0.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 3","pages":"82"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00748-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by chronic inflammation, metabolic disturbances, and progressive renal damage. Natural perennial herb, such as Epimedium, has shown potential therapeutic effects on DN, but its underlying mechanisms remain unclear. This study aimed to explore the pharmacological mechanisms of Epimedium in the treatment of DN through network pharmacology, molecular docking, and experimental validation. Active components of Epimedium were identified using TCMSP and SwissTargetPrediction databases, while DN-related targets were retrieved from GeneCards, DisGeNET, OMIM, and TTD databases. Overlapping targets were analyzed via PPI network and Cytoscape's cytoHubba plugin to identify hub genes. GO and KEGG enrichment analyses were conducted to explore functional pathways. Molecular docking validated the binding affinity between key targets and active components. Finally, high-glucose-induced HK-2 cell injury models were used to verify the protective effects of Epimedium through RT-qPCR, western blotting, and mitochondrial function assays. A total of 224 overlapping targets were identified, with AKT1, TNF, HSP90AA1, and SRC serving as key hub genes. GO and KEGG analyses revealed significant enrichment in pathways such as the PI3K-Akt signaling pathway and lipid metabolism. Molecular docking demonstrated strong interactions between Epimedium components and hub targets. Experimental validation showed that Epimedium restored nephrin and WT1 protein levels, mitigated mitochondrial dysfunction, and reversed high-glucose-induced overexpression of key targets. Epimedium exerts therapeutic effects on DN through multi-target interactions, primarily via the PI3K-Akt pathway, highlighting its potential as a novel treatment for DN.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-025-00748-0.

基于网络药理学和实验验证研究探讨淫羊藿治疗糖尿病肾病的机制。
糖尿病肾病(DN)是糖尿病的严重并发症,以慢性炎症、代谢紊乱和进行性肾损害为特征。天然多年生草本植物淫羊藿等已显示出对DN的潜在治疗作用,但其潜在机制尚不清楚。本研究旨在通过网络药理学、分子对接、实验验证等方法探讨淫羊藿治疗DN的药理机制。利用TCMSP和SwissTargetPrediction数据库鉴定淫羊藿的活性成分,从GeneCards、DisGeNET、OMIM和TTD数据库检索dn相关靶点。通过PPI网络和Cytoscape的cytoHubba插件分析重叠靶点以识别枢纽基因。通过GO和KEGG富集分析来探索功能途径。分子对接验证了关键靶点与活性成分之间的结合亲和力。最后,采用高糖诱导的HK-2细胞损伤模型,通过RT-qPCR、western blotting和线粒体功能检测验证淫羊藿的保护作用。共鉴定出224个重叠靶点,其中AKT1、TNF、HSP90AA1和SRC是关键枢纽基因。GO和KEGG分析显示PI3K-Akt信号通路和脂质代谢等通路显著富集。分子对接表明淫羊藿成分与枢纽靶点之间存在很强的相互作用。实验验证表明,淫羊藿恢复了nephrin和WT1蛋白水平,减轻了线粒体功能障碍,逆转了高糖诱导的关键靶点的过表达。淫羊藿通过主要通过PI3K-Akt通路的多靶点相互作用对DN发挥治疗作用,突出了其作为DN新疗法的潜力。补充信息:在线版本包含补充资料,可在10.1007/s10616-025-00748-0获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信