Unraveling the Mechanism of Tangmaikang Granules in Treating Diabetic Kidney Disease Based On UPLC-MS/MS, Network Pharmacology, Molecular Docking, Molecular Dynamics Simulations, and Experimental Validation.

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhixin Wang, Shuqin Liu, Ying Zhang, Huaming Xian, Xinzhu Yuan, Changwei Lin, Xisheng Xie
{"title":"Unraveling the Mechanism of Tangmaikang Granules in Treating Diabetic Kidney Disease Based On UPLC-MS/MS, Network Pharmacology, Molecular Docking, Molecular Dynamics Simulations, and Experimental Validation.","authors":"Zhixin Wang, Shuqin Liu, Ying Zhang, Huaming Xian, Xinzhu Yuan, Changwei Lin, Xisheng Xie","doi":"10.2174/0113892010369197250321083806","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic Kidney Disease (DKD) is a major cause of End-Stage Renal Disease (ESRD) and lacks effective treatments. Tangmaikang Granules (TMK), a multi-herb traditional Chinese medicine formulation, have shown potential in managing DKD. However, the precise active components, molecular mechanisms, and therapeutic advantages of TMK remain unclear.</p><p><strong>Objective: </strong>This study tests the hypothesis that TMK granules exert protective effects on DKD by targeting multiple pathways involved in oxidative stress, inflammation, and apoptosis in podocytes through a multi-targeted approach. The aim was to identify TMK's bioactive components, evaluate its therapeutic potential, and uncover its molecular mechanisms in DKD.</p><p><strong>Methods: </strong>The bioactive constituents in TMK were determined through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Drug targets were identified using SwissTargetPrediction and SuperPred, whereas DKD-associated targets were obtained from the GeneCards, DisGeNET, OMIM, and TTD databases. A Protein-Protein Interaction (PPI) network was constructed, and key targets were identified via topological analysis. Molecular docking and dynamics simulations were performed to evaluate stable binding interactions. GO and KEGG pathway enrichment analyses were conducted to uncover relevant signaling pathways. TMK's effects on oxidative stress, inflammation, and apoptosis in podocytes were assessed using CCK-8, flow cytometry, RT-qPCR, ELISA, and Western blot assays.</p><p><strong>Results: </strong>Thirty active compounds and 384 potential therapeutic targets were identified, with eight key targets. Pathway enrichment analysis revealed TMK's involvement in AGE-RAGE, EGFR, HIF-1, and apoptosis pathways, affecting inflammatory cytokine responses and oxidative stress. In vitro experiments demonstrated that TMK significantly reduced oxidative stress, inflammation, and apoptosis in podocytes by inhibiting the MAPK and NF-κB pathways.</p><p><strong>Conclusion: </strong>TMK granules target DKD through a multi-component, multi-target strategy, effectively mitigating oxidative stress and suppressing inflammatory and apoptotic pathways. This study integrates advanced computational and experimental methods, demonstrating TMK's unique therapeutic potential and providing a robust foundation for its clinical application in DKD management.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010369197250321083806","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diabetic Kidney Disease (DKD) is a major cause of End-Stage Renal Disease (ESRD) and lacks effective treatments. Tangmaikang Granules (TMK), a multi-herb traditional Chinese medicine formulation, have shown potential in managing DKD. However, the precise active components, molecular mechanisms, and therapeutic advantages of TMK remain unclear.

Objective: This study tests the hypothesis that TMK granules exert protective effects on DKD by targeting multiple pathways involved in oxidative stress, inflammation, and apoptosis in podocytes through a multi-targeted approach. The aim was to identify TMK's bioactive components, evaluate its therapeutic potential, and uncover its molecular mechanisms in DKD.

Methods: The bioactive constituents in TMK were determined through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Drug targets were identified using SwissTargetPrediction and SuperPred, whereas DKD-associated targets were obtained from the GeneCards, DisGeNET, OMIM, and TTD databases. A Protein-Protein Interaction (PPI) network was constructed, and key targets were identified via topological analysis. Molecular docking and dynamics simulations were performed to evaluate stable binding interactions. GO and KEGG pathway enrichment analyses were conducted to uncover relevant signaling pathways. TMK's effects on oxidative stress, inflammation, and apoptosis in podocytes were assessed using CCK-8, flow cytometry, RT-qPCR, ELISA, and Western blot assays.

Results: Thirty active compounds and 384 potential therapeutic targets were identified, with eight key targets. Pathway enrichment analysis revealed TMK's involvement in AGE-RAGE, EGFR, HIF-1, and apoptosis pathways, affecting inflammatory cytokine responses and oxidative stress. In vitro experiments demonstrated that TMK significantly reduced oxidative stress, inflammation, and apoptosis in podocytes by inhibiting the MAPK and NF-κB pathways.

Conclusion: TMK granules target DKD through a multi-component, multi-target strategy, effectively mitigating oxidative stress and suppressing inflammatory and apoptotic pathways. This study integrates advanced computational and experimental methods, demonstrating TMK's unique therapeutic potential and providing a robust foundation for its clinical application in DKD management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信