Backdoor Training Paradigm in Generative Adversarial Networks.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-03-09 DOI:10.3390/e27030283
Huangji Wang, Fan Cheng
{"title":"Backdoor Training Paradigm in Generative Adversarial Networks.","authors":"Huangji Wang, Fan Cheng","doi":"10.3390/e27030283","DOIUrl":null,"url":null,"abstract":"<p><p>Backdoor attacks remain a critical area of focus in machine learning research, with one prominent approach being the introduction of backdoor training injection mechanisms. These mechanisms embed backdoor triggers into the training process, enabling the model to recognize specific trigger inputs and produce predefined outputs post-training. In this paper, we identify a unifying pattern across existing backdoor injection methods in generative models and propose a novel backdoor training injection paradigm. This paradigm leverages a unified loss function design to facilitate backdoor injection across diverse generative models. We demonstrate the effectiveness and generalizability of this paradigm through experiments on generative adversarial networks (GANs) and Diffusion Models. Our experimental results on GANs confirm that the proposed method successfully embeds backdoor triggers, enhancing the model's security and robustness. This work provides a new perspective and methodological framework for backdoor injection in generative models, making a significant contribution toward improving the safety and reliability of these models.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030283","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Backdoor attacks remain a critical area of focus in machine learning research, with one prominent approach being the introduction of backdoor training injection mechanisms. These mechanisms embed backdoor triggers into the training process, enabling the model to recognize specific trigger inputs and produce predefined outputs post-training. In this paper, we identify a unifying pattern across existing backdoor injection methods in generative models and propose a novel backdoor training injection paradigm. This paradigm leverages a unified loss function design to facilitate backdoor injection across diverse generative models. We demonstrate the effectiveness and generalizability of this paradigm through experiments on generative adversarial networks (GANs) and Diffusion Models. Our experimental results on GANs confirm that the proposed method successfully embeds backdoor triggers, enhancing the model's security and robustness. This work provides a new perspective and methodological framework for backdoor injection in generative models, making a significant contribution toward improving the safety and reliability of these models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信