S Daphne, V Mary Anita Rajam, P Hemanth, Sundarrajan Dinesh
{"title":"An Ensemble Patient Graph Framework for Predictive Modelling from Electronic Health Records and Medical Notes.","authors":"S Daphne, V Mary Anita Rajam, P Hemanth, Sundarrajan Dinesh","doi":"10.3390/diagnostics15060756","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Electronic health records (EHRs) are becoming increasingly important in both academic research and business applications. Recent studies indicate that predictive tasks, such as heart failure detection, perform better when the geometric structure of EHR data, including the relationships between diagnoses and treatments, is considered. However, many EHRs lack essential structural information. This study aims to improve predictive accuracy in healthcare by constructing a Patient Knowledge Graph Ensemble Framework (PKGNN) to analyse ICU patient cohorts and predict mortality and hospital readmission outcomes. <b>Methods:</b> This study utilises a cohort of 42,671 patients from the MIMIC-IV dataset to build the PKGNN framework, which consists of three main components: (1) medical note extraction, (2) patient graph construction, and (3) prediction tasks. Advanced Natural Language Processing (NLP) models, including Clinical BERT, BioBERT, and BlueBERT, extract and integrate semantic representations from discharge summaries into a patient knowledge graph. This structured representation is then used to enhance predictive tasks. <b>Results:</b> Performance evaluations on the MIMIC-IV dataset indicate that the PKGNN framework outperforms state-of-the-art baseline models in predicting mortality and 30-day hospital readmission. A thorough framework analysis reveals that incorporating patient graph structures improves prediction accuracy. Furthermore, an ensemble model enhances risk prediction performance and identifies crucial clinical indicators. <b>Conclusions:</b> This study highlights the importance of leveraging structured knowledge graphs in EHR analysis to improve predictive modelling for critical healthcare outcomes. The PKGNN framework enhances the accuracy of mortality and readmission predictions by integrating advanced NLP techniques with patient graph structures. This work contributes to the literature by advancing knowledge graph-based EHR analysis strategies, ultimately supporting better clinical decision-making and risk assessment.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941089/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060756","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Electronic health records (EHRs) are becoming increasingly important in both academic research and business applications. Recent studies indicate that predictive tasks, such as heart failure detection, perform better when the geometric structure of EHR data, including the relationships between diagnoses and treatments, is considered. However, many EHRs lack essential structural information. This study aims to improve predictive accuracy in healthcare by constructing a Patient Knowledge Graph Ensemble Framework (PKGNN) to analyse ICU patient cohorts and predict mortality and hospital readmission outcomes. Methods: This study utilises a cohort of 42,671 patients from the MIMIC-IV dataset to build the PKGNN framework, which consists of three main components: (1) medical note extraction, (2) patient graph construction, and (3) prediction tasks. Advanced Natural Language Processing (NLP) models, including Clinical BERT, BioBERT, and BlueBERT, extract and integrate semantic representations from discharge summaries into a patient knowledge graph. This structured representation is then used to enhance predictive tasks. Results: Performance evaluations on the MIMIC-IV dataset indicate that the PKGNN framework outperforms state-of-the-art baseline models in predicting mortality and 30-day hospital readmission. A thorough framework analysis reveals that incorporating patient graph structures improves prediction accuracy. Furthermore, an ensemble model enhances risk prediction performance and identifies crucial clinical indicators. Conclusions: This study highlights the importance of leveraging structured knowledge graphs in EHR analysis to improve predictive modelling for critical healthcare outcomes. The PKGNN framework enhances the accuracy of mortality and readmission predictions by integrating advanced NLP techniques with patient graph structures. This work contributes to the literature by advancing knowledge graph-based EHR analysis strategies, ultimately supporting better clinical decision-making and risk assessment.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.