Caiyuzhen Zhang, Yuanwen Dai, Yong Chen, Bo Cao, Jinbing An, Wei Pang
{"title":"Exploring Mechanisms of Ephx2 in Treating Atherosclerosis Using Independent Cascade Model and Adverse Outcome Pathways.","authors":"Caiyuzhen Zhang, Yuanwen Dai, Yong Chen, Bo Cao, Jinbing An, Wei Pang","doi":"10.2174/0113862073345542250220051427","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Atherosclerosis (AS) is a leading cause of cardiovascular diseases, characterized by lipid accumulation in arterial walls. The enzyme Ephx2 (soluble epoxide hydrolase, sEH) is implicated in AS development, but its precise mechanisms and therapeutic potential are not fully understood.</p><p><strong>Objectives: </strong>This study aimed to analyze gene expression data from low-density lipoprotein receptor knockout (LDLR⁸/⁸) and LDLR⁸/⁸sEH⁸/⁸ mice to identify significant genes associated with AS.</p><p><strong>Methods: </strong>A directed compound-protein interaction network was constructed based on these genes and related pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the end, through resistance distance (RD) between any two nodes in this network, the Independent Cascade (IC) model was applied to explore Ephx2 mechanisms in AS, such as important Adverse Outcome Pathways (AOPs).</p><p><strong>Results: </strong>Several AOPs were identified as critical in AS treatment via Ephx2. The key AOPs included inflammatory response and cytokine release, cholesterol deposition and oxidation, disruption of plaque stability, smooth muscle cell proliferation and migration, and platelet activation and coagulation. Within the top AOPs of inflammatory response and cytokine release, potential target genes were identified, such as Mapk3, PiK3cd, Gnai2, Mapk10, Arnt, and RhoA. Critical paths from Ephx2 to these target genes were established, suggesting mechanisms by which Ephx2 may influence AS pathogenesis.</p><p><strong>Conclusion: </strong>By defining the AS network and corresponding RD, this study elucidated potential mechanisms by which Ephx2 affects AS through specific KEGG pathways, AOPs, and target genes. These findings enhanced the understanding of AS pathogenesis and highlighted potential targets like Mapk3 for developing therapeutic strategies in AS prevention and treatment.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073345542250220051427","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Atherosclerosis (AS) is a leading cause of cardiovascular diseases, characterized by lipid accumulation in arterial walls. The enzyme Ephx2 (soluble epoxide hydrolase, sEH) is implicated in AS development, but its precise mechanisms and therapeutic potential are not fully understood.
Objectives: This study aimed to analyze gene expression data from low-density lipoprotein receptor knockout (LDLR⁸/⁸) and LDLR⁸/⁸sEH⁸/⁸ mice to identify significant genes associated with AS.
Methods: A directed compound-protein interaction network was constructed based on these genes and related pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the end, through resistance distance (RD) between any two nodes in this network, the Independent Cascade (IC) model was applied to explore Ephx2 mechanisms in AS, such as important Adverse Outcome Pathways (AOPs).
Results: Several AOPs were identified as critical in AS treatment via Ephx2. The key AOPs included inflammatory response and cytokine release, cholesterol deposition and oxidation, disruption of plaque stability, smooth muscle cell proliferation and migration, and platelet activation and coagulation. Within the top AOPs of inflammatory response and cytokine release, potential target genes were identified, such as Mapk3, PiK3cd, Gnai2, Mapk10, Arnt, and RhoA. Critical paths from Ephx2 to these target genes were established, suggesting mechanisms by which Ephx2 may influence AS pathogenesis.
Conclusion: By defining the AS network and corresponding RD, this study elucidated potential mechanisms by which Ephx2 affects AS through specific KEGG pathways, AOPs, and target genes. These findings enhanced the understanding of AS pathogenesis and highlighted potential targets like Mapk3 for developing therapeutic strategies in AS prevention and treatment.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.