A Novel Diagnostic Framework with an Optimized Ensemble of Vision Transformers and Convolutional Neural Networks for Enhanced Alzheimer's Disease Detection in Medical Imaging.

IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Joy Chakra Bortty, Gouri Shankar Chakraborty, Inshad Rahman Noman, Salil Batra, Joy Das, Kanchon Kumar Bishnu, Md Tanvir Rahman Tarafder, Araf Islam
{"title":"A Novel Diagnostic Framework with an Optimized Ensemble of Vision Transformers and Convolutional Neural Networks for Enhanced Alzheimer's Disease Detection in Medical Imaging.","authors":"Joy Chakra Bortty, Gouri Shankar Chakraborty, Inshad Rahman Noman, Salil Batra, Joy Das, Kanchon Kumar Bishnu, Md Tanvir Rahman Tarafder, Araf Islam","doi":"10.3390/diagnostics15060789","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Alzheimer's disease (AD) is a progressive, neurodegenerative disorder, which causes memory loss and loss of cognitive functioning, along with behavioral changes. Early detection is important to delay disease progression, timely intervention and to increase patients' and caregivers' quality of life (QoL). One of the major and primary challenges for preventing any disease is to identify the disease at the initial stage through a quick and reliable detection process. Different researchers across the world are still working relentlessly, coming up with significant solutions. Artificial intelligence-based solutions are putting great importance on identifying the disease efficiently, where deep learning with medical imaging is highly being utilized to develop disease detection frameworks. In this work, a novel and optimized detection framework has been proposed that comes with remarkable performance that can classify the level of Alzheimer's accurately and efficiently. <b>Methods:</b> A powerful vision transformer model (ViT-B16) with three efficient Convolutional Neural Network (CNN) models (VGG19, ResNet152V2, and EfficientNetV2B3) has been trained with a benchmark dataset, 'OASIS', that comes with a high volume of brain Magnetic Resonance Images (MRI). <b>Results:</b> A weighted average ensemble technique with a Grasshopper optimization algorithm has been designed and utilized to ensure maximum performance with high accuracy of 97.31%, precision of 97.32, recall of 97.35, and F1 score of 0.97. <b>Conclusions:</b> The work has been compared with other existing state-of-the-art techniques, where it comes with high efficiency, sensitivity, and reliability. The framework can be utilized in IoMT infrastructure where one can access smart and remote diagnosis services.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060789","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Alzheimer's disease (AD) is a progressive, neurodegenerative disorder, which causes memory loss and loss of cognitive functioning, along with behavioral changes. Early detection is important to delay disease progression, timely intervention and to increase patients' and caregivers' quality of life (QoL). One of the major and primary challenges for preventing any disease is to identify the disease at the initial stage through a quick and reliable detection process. Different researchers across the world are still working relentlessly, coming up with significant solutions. Artificial intelligence-based solutions are putting great importance on identifying the disease efficiently, where deep learning with medical imaging is highly being utilized to develop disease detection frameworks. In this work, a novel and optimized detection framework has been proposed that comes with remarkable performance that can classify the level of Alzheimer's accurately and efficiently. Methods: A powerful vision transformer model (ViT-B16) with three efficient Convolutional Neural Network (CNN) models (VGG19, ResNet152V2, and EfficientNetV2B3) has been trained with a benchmark dataset, 'OASIS', that comes with a high volume of brain Magnetic Resonance Images (MRI). Results: A weighted average ensemble technique with a Grasshopper optimization algorithm has been designed and utilized to ensure maximum performance with high accuracy of 97.31%, precision of 97.32, recall of 97.35, and F1 score of 0.97. Conclusions: The work has been compared with other existing state-of-the-art techniques, where it comes with high efficiency, sensitivity, and reliability. The framework can be utilized in IoMT infrastructure where one can access smart and remote diagnosis services.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信