Correlation of Spectral CT-Based Iodine Concentration Parameters with LI-RADS Classification of Suspected Hepatocellular Carcinoma Nodules in Cirrhotic Patients.
Antonio Celestino, Paolo Marra, Alessandro Barbaro, Carlotta Gargiulo, Riccardo Muglia, Giuseppe Muscogiuri, Pietro Andrea Bonaffini, Sandro Sironi
{"title":"Correlation of Spectral CT-Based Iodine Concentration Parameters with LI-RADS Classification of Suspected Hepatocellular Carcinoma Nodules in Cirrhotic Patients.","authors":"Antonio Celestino, Paolo Marra, Alessandro Barbaro, Carlotta Gargiulo, Riccardo Muglia, Giuseppe Muscogiuri, Pietro Andrea Bonaffini, Sandro Sironi","doi":"10.3390/diagnostics15060725","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: The LI-RADS classification is widely used for the hepatocellular carcinoma (HCC) risk stratification of liver nodules in cirrhotic patients. The evaluation of nodule enhancement, which is a major criterion, commonly relies on qualitative assessment. This study aims to investigate the potential role of material density (MD) parameters in the iodine maps of spectral computed tomography (SCT) to discriminate between LI-RADS (v2018 CORE) categories in cirrhotic patients. <b>Methods</b>: Dual-energy SCT scans of cirrhotic patients with suspected HCC, taken between March 1st, 2022 and September 30th, 2023, were retrospectively reviewed. All the images were reviewed by trained radiologists to classify nodules as LI-RADS 3, 4, or 5 by consensus. MD maps were generated in the hepatic arterial phase (HAP), portal venous phase (PVP), and equilibrium phase (EP). The iodine concentration density (ICD) values of nodules (ICDnodule) and the non-nodular liver parenchyma (ICDliver) were measured to calculate lesion-to-non-nodular liver ICD ratio (LNR), as well as their differences (ΔICD) and ratios (rLNR). Results were correlated with LI-RADS categories. <b>Results</b>: A total of 69 patients were included and 79 DECT exams were assessed. Overall, 197 nodules (size 24.67 ± 23.11 mm, mean ± SD) were categorized into different LI-RADS classes: 44 were classed as LI-RADS 3 (22.3%), 14 were classed as LI-RADS 4 (7.1%), and 139 were classed as LI-RADS 5 (70.6%). The arterial LNR, arterial ICDnodule, ΔICD, and rLNR between HAP and PVP discriminated between LI-RADS 3 and LI-RADS 4+5 nodules (<i>p</i> < 0.001). All the calculated MD parameters showed high diagnostic accuracy rates (all AUCs = 70-73%). <b>Conclusions</b>: MD parameters of liver nodules measured in SCT scans are viable diagnostic tools that may increase the radiologist's confidence in LI-RADS class allocation in cirrhotic patients. This preliminary and speculative study can serve as a baseline for the potential quantification of iodine concentrations of focal liver lesions to reduce subjectivity in hepatic nodule assessment and reporting. Future perspectives include the quantification of iodine concentration for prognostic stratification before locoregional and systemic treatments in HCC patients.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060725","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The LI-RADS classification is widely used for the hepatocellular carcinoma (HCC) risk stratification of liver nodules in cirrhotic patients. The evaluation of nodule enhancement, which is a major criterion, commonly relies on qualitative assessment. This study aims to investigate the potential role of material density (MD) parameters in the iodine maps of spectral computed tomography (SCT) to discriminate between LI-RADS (v2018 CORE) categories in cirrhotic patients. Methods: Dual-energy SCT scans of cirrhotic patients with suspected HCC, taken between March 1st, 2022 and September 30th, 2023, were retrospectively reviewed. All the images were reviewed by trained radiologists to classify nodules as LI-RADS 3, 4, or 5 by consensus. MD maps were generated in the hepatic arterial phase (HAP), portal venous phase (PVP), and equilibrium phase (EP). The iodine concentration density (ICD) values of nodules (ICDnodule) and the non-nodular liver parenchyma (ICDliver) were measured to calculate lesion-to-non-nodular liver ICD ratio (LNR), as well as their differences (ΔICD) and ratios (rLNR). Results were correlated with LI-RADS categories. Results: A total of 69 patients were included and 79 DECT exams were assessed. Overall, 197 nodules (size 24.67 ± 23.11 mm, mean ± SD) were categorized into different LI-RADS classes: 44 were classed as LI-RADS 3 (22.3%), 14 were classed as LI-RADS 4 (7.1%), and 139 were classed as LI-RADS 5 (70.6%). The arterial LNR, arterial ICDnodule, ΔICD, and rLNR between HAP and PVP discriminated between LI-RADS 3 and LI-RADS 4+5 nodules (p < 0.001). All the calculated MD parameters showed high diagnostic accuracy rates (all AUCs = 70-73%). Conclusions: MD parameters of liver nodules measured in SCT scans are viable diagnostic tools that may increase the radiologist's confidence in LI-RADS class allocation in cirrhotic patients. This preliminary and speculative study can serve as a baseline for the potential quantification of iodine concentrations of focal liver lesions to reduce subjectivity in hepatic nodule assessment and reporting. Future perspectives include the quantification of iodine concentration for prognostic stratification before locoregional and systemic treatments in HCC patients.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.