Noncanonical phagocytosis-like SEAL establishes mammalian fertilization.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY
Naokazu Inoue, Takako Saito, Ikuo Wada
{"title":"Noncanonical phagocytosis-like SEAL establishes mammalian fertilization.","authors":"Naokazu Inoue, Takako Saito, Ikuo Wada","doi":"10.1016/j.celrep.2025.115463","DOIUrl":null,"url":null,"abstract":"<p><p>In many forms of sexual reproduction, only the most robust spermatozoa, which overcome multiple physiological challenges, reach the oocyte. However, the exact mechanisms of gamete recognition and fusion are unknown. In the present study, we demonstrated that with the onset of gamete recognition, oocyte microvilli form lamellipodium-like structures, activate actin polymerization, and subsequently engulf spermatozoa to initiate gamete fusion. Gamete fusion occurred via a phagocytosis-like process we termed \"sperm engulfment activated by IZUMO1-JUNO linkage and gamete fusion-related factors\" (SEAL). Gamete adhesion was strictly regulated by binding of sperm IZUMO1 to oocyte JUNO, while SEAL was primarily mediated by sperm DCST1/2, SPACA6, TMEM95, FIMP, and TMEM81, the essential factors for gamete fusion. Interestingly, JUNO was almost depleted from oocyte surfaces in the region where SEAL enveloped spermatozoa by microvilli without actin polymerization. SEAL formation was recapitulated using JUNO-expressing K562 lymphocytic cells rather than oocytes. Together, these findings suggest that dynamic rearrangement of membrane components facilitates SEAL prior to successful fertilization.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115463"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115463","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In many forms of sexual reproduction, only the most robust spermatozoa, which overcome multiple physiological challenges, reach the oocyte. However, the exact mechanisms of gamete recognition and fusion are unknown. In the present study, we demonstrated that with the onset of gamete recognition, oocyte microvilli form lamellipodium-like structures, activate actin polymerization, and subsequently engulf spermatozoa to initiate gamete fusion. Gamete fusion occurred via a phagocytosis-like process we termed "sperm engulfment activated by IZUMO1-JUNO linkage and gamete fusion-related factors" (SEAL). Gamete adhesion was strictly regulated by binding of sperm IZUMO1 to oocyte JUNO, while SEAL was primarily mediated by sperm DCST1/2, SPACA6, TMEM95, FIMP, and TMEM81, the essential factors for gamete fusion. Interestingly, JUNO was almost depleted from oocyte surfaces in the region where SEAL enveloped spermatozoa by microvilli without actin polymerization. SEAL formation was recapitulated using JUNO-expressing K562 lymphocytic cells rather than oocytes. Together, these findings suggest that dynamic rearrangement of membrane components facilitates SEAL prior to successful fertilization.

非典范吞噬样 SEAL 建立了哺乳动物的受精过程。
在许多有性生殖形式中,只有克服了多种生理挑战的最强壮精子才能到达卵母细胞。然而,配子识别和融合的确切机制尚不清楚。在本研究中,我们证明了随着配子识别的开始,卵母细胞微绒毛会形成薄壁基质样结构,激活肌动蛋白聚合,随后吞噬精子,启动配子融合。配子融合是通过一种类似吞噬的过程发生的,我们称之为 "IZUMO1-JUNO连接和配子融合相关因子激活的精子吞噬"(SEAL)。配子粘附受精子 IZUMO1 与卵母细胞 JUNO 结合的严格调控,而 SEAL 则主要由精子 DCST1/2、SPACA6、TMEM95、FIMP 和 TMEM81(配子融合的基本因子)介导。有趣的是,在 SEAL 通过微绒毛包裹精子而不发生肌动蛋白聚合的区域,JUNO 几乎从卵母细胞表面耗尽。使用表达 JUNO 的 K562 淋巴细胞而不是卵母细胞可以重现 SEAL 的形成。这些发现共同表明,在成功受精之前,膜成分的动态重排有助于 SEAL 的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信