Vranda Garg, Wiebke Möbius, Ralf Heinrich, Torben Ruhwedel, Roshan Priyarangana Perera, Patricia Scholz, Till Ischebeck, Gabriela Salinas, Christian Dullin, Martin C Göpfert, Jacob Engelmann, Roland Dosch, Bart R H Geurten
{"title":"Patient-specific mutation of contact site protein Tomm70 causes neurodegeneration.","authors":"Vranda Garg, Wiebke Möbius, Ralf Heinrich, Torben Ruhwedel, Roshan Priyarangana Perera, Patricia Scholz, Till Ischebeck, Gabriela Salinas, Christian Dullin, Martin C Göpfert, Jacob Engelmann, Roland Dosch, Bart R H Geurten","doi":"10.1242/dmm.052029","DOIUrl":null,"url":null,"abstract":"<p><p>TOMM70 is a receptor at the contact site between mitochondria and the endoplasmic reticulum, and TOMM70 has been identified as a risk gene for hereditary spastic paraplegia. Furthermore, de novo missense variants of TOMM70 have been identified to cause neurological impairments in two unrelated patients. Here, we show that mutant zebrafish ruehreip25ca also harbour a missense mutation in tomm70, affecting the same conserved isoleucine residue as in one of the human patients. Using this model, we demonstrate how loss of Tomm70 function leads to impairment. At the molecular level, the mutation affected the interaction of Tomm70 with the endoplasmic reticulum protein Lam6, a known sterol transporter. At the neuronal level, the mutation impaired mitochondrial transport to the axons and dendrites, leading to demyelination of large calibre axons in the spinal cord. These neurodegenerative defects in zebrafish were associated with reduced endurance and swimming efficiency, and alterations in the C-start escape response, which correlated with decreased spiking in giant Mauthner neurons. Thus, in zebrafish, a mutation in the endoplasmic reticulum-mitochondria contact site protein Tomm70 recreates some of the neurodegenerative phenotypes characteristic of hereditary spastic paraplegia.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TOMM70 is a receptor at the contact site between mitochondria and the endoplasmic reticulum, and TOMM70 has been identified as a risk gene for hereditary spastic paraplegia. Furthermore, de novo missense variants of TOMM70 have been identified to cause neurological impairments in two unrelated patients. Here, we show that mutant zebrafish ruehreip25ca also harbour a missense mutation in tomm70, affecting the same conserved isoleucine residue as in one of the human patients. Using this model, we demonstrate how loss of Tomm70 function leads to impairment. At the molecular level, the mutation affected the interaction of Tomm70 with the endoplasmic reticulum protein Lam6, a known sterol transporter. At the neuronal level, the mutation impaired mitochondrial transport to the axons and dendrites, leading to demyelination of large calibre axons in the spinal cord. These neurodegenerative defects in zebrafish were associated with reduced endurance and swimming efficiency, and alterations in the C-start escape response, which correlated with decreased spiking in giant Mauthner neurons. Thus, in zebrafish, a mutation in the endoplasmic reticulum-mitochondria contact site protein Tomm70 recreates some of the neurodegenerative phenotypes characteristic of hereditary spastic paraplegia.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.