{"title":"Programmed Cell Death Ligand as a Biomarker for Response to Immunotherapy: Contribution of Mass Spectrometry-Based Analysis.","authors":"Marco Agostini, Pietro Traldi, Mahmoud Hamdan","doi":"10.3390/cancers17061001","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibition is a major component in today's cancer immunotherapy. In recent years, the FDA has approved a number of immune checkpoint inhibitors (ICIs) for the treatment of melanoma, non-small-cell lung, breast and gastrointestinal cancers. These inhibitors, which target cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1) checkpoints have assumed a leading role in immunotherapy. The same inhibitors exert significant antitumor effects by overcoming tumor cell immune evasion and reversing T-cell exhaustion. The initial impact of this therapy in cancer treatment was justly described as revolutionary, however, clinical as well as research data which followed demonstrated that these innovative drugs are costly, are associated with potentially severe adverse effects, and only benefit a small subset of patients. These limitations encouraged enhanced research and clinical efforts to identify predictive biomarkers to stratify patients who are most likely to benefit from this form of therapy. The discovery and characterization of this class of biomarkers is pivotal in guiding individualized treatment against various forms of cancer. Currently, there are three FDA-approved predictive biomarkers, however, none of which on its own can deliver a reliable and precise response to immune therapy. Present literature identifies the absence of precise predictive biomarkers and poor understanding of the mechanisms behind tumor resistance as the main obstacles facing ICIs immunotherapy. In the present text, we discuss the dual role of PD-L1 as a biomarker for response to immunotherapy and as an immune checkpoint. The contribution of mass spectrometry-based analysis, particularly the impact of protein post-translational modifications on the performance of this protein is underlined.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 6","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17061001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint inhibition is a major component in today's cancer immunotherapy. In recent years, the FDA has approved a number of immune checkpoint inhibitors (ICIs) for the treatment of melanoma, non-small-cell lung, breast and gastrointestinal cancers. These inhibitors, which target cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1) checkpoints have assumed a leading role in immunotherapy. The same inhibitors exert significant antitumor effects by overcoming tumor cell immune evasion and reversing T-cell exhaustion. The initial impact of this therapy in cancer treatment was justly described as revolutionary, however, clinical as well as research data which followed demonstrated that these innovative drugs are costly, are associated with potentially severe adverse effects, and only benefit a small subset of patients. These limitations encouraged enhanced research and clinical efforts to identify predictive biomarkers to stratify patients who are most likely to benefit from this form of therapy. The discovery and characterization of this class of biomarkers is pivotal in guiding individualized treatment against various forms of cancer. Currently, there are three FDA-approved predictive biomarkers, however, none of which on its own can deliver a reliable and precise response to immune therapy. Present literature identifies the absence of precise predictive biomarkers and poor understanding of the mechanisms behind tumor resistance as the main obstacles facing ICIs immunotherapy. In the present text, we discuss the dual role of PD-L1 as a biomarker for response to immunotherapy and as an immune checkpoint. The contribution of mass spectrometry-based analysis, particularly the impact of protein post-translational modifications on the performance of this protein is underlined.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.