Characterization and evaluation of tamarind (Tamarindus indica L.) germplasm: implications for tree improvement strategies.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
A K Singh, Vikas Yadav, V V Appa Rao, Daya Shankar Mishra, Lalu Prasad Yadav, K Gangadhara, Jagadish Rane, A Sahil, Prakashbhai Ravat, P Janani, Prashant Kaushik, Ali Khadivi, Yazgan Tunç
{"title":"Characterization and evaluation of tamarind (Tamarindus indica L.) germplasm: implications for tree improvement strategies.","authors":"A K Singh, Vikas Yadav, V V Appa Rao, Daya Shankar Mishra, Lalu Prasad Yadav, K Gangadhara, Jagadish Rane, A Sahil, Prakashbhai Ravat, P Janani, Prashant Kaushik, Ali Khadivi, Yazgan Tunç","doi":"10.1186/s12870-025-06415-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tamarind (Tamarindus indica L.; Fabaceae) a unique tree is valued not only for its fruits and timber but also for its shade, making it a popular avenue tree. It thrives in diverse climates and soils, particularly in semiarid regions, due to its deep root system, making it valuable in areas prone to water scarcity and high temperatures. It is now extensively grown in subtropical and semi-arid tropical regions of the world particularly common in India, Africa, and Southeast Asia. In this study, the morpho-physico-chemical variations of 30 tamarind genotypes were evaluated using multivariate analysis based on 28 variables which is essential for tree improvement.</p><p><strong>Results: </strong>This study characterizes a collection of 30 tamarind genotypes based on a range of qualitative and quantitative traits to assess phenotypic diversity. The analysis revealed wide variation across most of the traits, indicating their potential for distinguishing germplasm diversity. High phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were observed for tree height (24.34 and 21.26), stem girth (26.63 and 23.72), tree spread E-W (23.50 and 21.68), tree spread N-S (27.46 and 24.38), pod yield kg/tree (29.98 and 27.56), pod length (25.29 and 24.51), pod breadth (22.08 and 21.92), pulp weight (30.49 and 28.58), and pod weight 31.03 and 29.74), which indicates these traits display high variation, suggesting significant potential for selection. High heritability coupled with high genetic advance were observed for the most of traits which were influenced by additive or fixable genetic variation. Path coefficient analysis revealed that traits, such as stem girth and tree spread showed direct effects on pod yield, while other characters contributed indirectly. Principal component analysis (PCA) indicated that PC-1 accounted for approximately 27.648% of the total variance, followed by PC-2 (18.250%), and PC-3 (15.835%), and hierarchical clustering uncovered crucial genetic components and distinct clusters, which can be considered for targeted breeding strategies. Cluster II emerged as the most divergent cluster, due to its the highest inter-cluster distances with other clusters and the highest intra-cluster distance.</p><p><strong>Conclusions: </strong>The results demonstrate how varied germplasm might be used to improve tamarind cultivars. To overcome heterogeneity in desired features, a complete collection of 28 morphological descriptors is provided to characterize, evaluate, and identify tamarind genotypes. The results underscore the importance of phenotypic diversity for developing core collections with enhanced variability and for designing targeted tamarind tree breeding strategies. This study provides valuable insights for the improvement and conservation of tamarind germplasm, a valuable species with considerable potential for fruit production and other economic uses.</p><p><strong>Clinical trial study: </strong>Not applicable.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"396"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06415-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Tamarind (Tamarindus indica L.; Fabaceae) a unique tree is valued not only for its fruits and timber but also for its shade, making it a popular avenue tree. It thrives in diverse climates and soils, particularly in semiarid regions, due to its deep root system, making it valuable in areas prone to water scarcity and high temperatures. It is now extensively grown in subtropical and semi-arid tropical regions of the world particularly common in India, Africa, and Southeast Asia. In this study, the morpho-physico-chemical variations of 30 tamarind genotypes were evaluated using multivariate analysis based on 28 variables which is essential for tree improvement.

Results: This study characterizes a collection of 30 tamarind genotypes based on a range of qualitative and quantitative traits to assess phenotypic diversity. The analysis revealed wide variation across most of the traits, indicating their potential for distinguishing germplasm diversity. High phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were observed for tree height (24.34 and 21.26), stem girth (26.63 and 23.72), tree spread E-W (23.50 and 21.68), tree spread N-S (27.46 and 24.38), pod yield kg/tree (29.98 and 27.56), pod length (25.29 and 24.51), pod breadth (22.08 and 21.92), pulp weight (30.49 and 28.58), and pod weight 31.03 and 29.74), which indicates these traits display high variation, suggesting significant potential for selection. High heritability coupled with high genetic advance were observed for the most of traits which were influenced by additive or fixable genetic variation. Path coefficient analysis revealed that traits, such as stem girth and tree spread showed direct effects on pod yield, while other characters contributed indirectly. Principal component analysis (PCA) indicated that PC-1 accounted for approximately 27.648% of the total variance, followed by PC-2 (18.250%), and PC-3 (15.835%), and hierarchical clustering uncovered crucial genetic components and distinct clusters, which can be considered for targeted breeding strategies. Cluster II emerged as the most divergent cluster, due to its the highest inter-cluster distances with other clusters and the highest intra-cluster distance.

Conclusions: The results demonstrate how varied germplasm might be used to improve tamarind cultivars. To overcome heterogeneity in desired features, a complete collection of 28 morphological descriptors is provided to characterize, evaluate, and identify tamarind genotypes. The results underscore the importance of phenotypic diversity for developing core collections with enhanced variability and for designing targeted tamarind tree breeding strategies. This study provides valuable insights for the improvement and conservation of tamarind germplasm, a valuable species with considerable potential for fruit production and other economic uses.

Clinical trial study: Not applicable.

Clinical trial number: Not applicable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信