Biochemical and gene expression profiling of five pear species under drought stress conditions.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Lavin Babaei, M Mehdi Sharifani, Reza Darvishzadeh, Naser Abbaspour, Mashhid Henareh
{"title":"Biochemical and gene expression profiling of five pear species under drought stress conditions.","authors":"Lavin Babaei, M Mehdi Sharifani, Reza Darvishzadeh, Naser Abbaspour, Mashhid Henareh","doi":"10.1186/s12870-025-06408-x","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is one of the crucial abiotic stresses which affects growth, development, and performance of pear trees. This research was performed to investigate responses of five pear species including Pyrus communis L., Pyrus boissieriana Bushe., Pyrus glabra Boiss., Pyrus syriaca Boiss., and Pyrus salicifolia Pall. to different levels of drought stress. The potted trees were irrigated with water volume of 100%, 60%, or 30% of field capacity (FC) during 90 days. Based on the visual observation, the plant growth was restricted by severe drought in all species. Malondialdehyde (MDA) and glycine betaine (GB) contents, as well as the ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT) activities were indicated an uprising behavior under drought stress. Principal component analysis (PCA) analysis revealed P. glabra as tolerant and P. communis as sensitive to drought stress. The expression rates of stress-responsive transcription factors (TFs); WRKY29 and DREB6 and their responding genes, including LEA29 and Dehydrin1, were analyzed in the two differentially drought-responding pear species i.e., P. glabra and P. communis. The expression of the studied TFs was induced when both species were exposed to higher drought levels. The species P. glabra exhibited better osmoregulation, antioxidant response, and higher up-regulation of WRKY29, DREB6, LEA29 and Dehydrin1. In conclusion, among the studied pear species, P. glabra could best tolerate drought stress by boosting protective mechanisms.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"397"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06408-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is one of the crucial abiotic stresses which affects growth, development, and performance of pear trees. This research was performed to investigate responses of five pear species including Pyrus communis L., Pyrus boissieriana Bushe., Pyrus glabra Boiss., Pyrus syriaca Boiss., and Pyrus salicifolia Pall. to different levels of drought stress. The potted trees were irrigated with water volume of 100%, 60%, or 30% of field capacity (FC) during 90 days. Based on the visual observation, the plant growth was restricted by severe drought in all species. Malondialdehyde (MDA) and glycine betaine (GB) contents, as well as the ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT) activities were indicated an uprising behavior under drought stress. Principal component analysis (PCA) analysis revealed P. glabra as tolerant and P. communis as sensitive to drought stress. The expression rates of stress-responsive transcription factors (TFs); WRKY29 and DREB6 and their responding genes, including LEA29 and Dehydrin1, were analyzed in the two differentially drought-responding pear species i.e., P. glabra and P. communis. The expression of the studied TFs was induced when both species were exposed to higher drought levels. The species P. glabra exhibited better osmoregulation, antioxidant response, and higher up-regulation of WRKY29, DREB6, LEA29 and Dehydrin1. In conclusion, among the studied pear species, P. glabra could best tolerate drought stress by boosting protective mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信