Oxygen Sensitive Drug Release Using Hemoglobin Microbubbles: A New Approach to Targeting Hypoxia in Ultrasound-Mediated Drug Delivery

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Ghazal Rastegar, Mohammad Musa Salman, Shashank R. Sirsi
{"title":"Oxygen Sensitive Drug Release Using Hemoglobin Microbubbles: A New Approach to Targeting Hypoxia in Ultrasound-Mediated Drug Delivery","authors":"Ghazal Rastegar,&nbsp;Mohammad Musa Salman,&nbsp;Shashank R. Sirsi","doi":"10.1016/j.ijpharm.2025.125521","DOIUrl":null,"url":null,"abstract":"<div><div>Targeted drug delivery strategies using focused ultrasound (FUS) are gaining prominence in clinical application. FUS offers deep tissue penetration and precise targeting capabilities. The capabilities of FUS in targeted drug delivery are greatly enhanced by the introduction of ultrasound contrast agents (UCAs – also known as microbubbles). This study introduces a novel hypoxia-targeting drug delivery system using hemoglobin microbubbles (HbMBs) conjugated with doxorubicin-loaded liposomes (LDOX). Previously, we reported that HbMBs exhibit significant acoustic response differences between oxygenated and deoxygenated environments due to hemoglobin’s conformational changes, which alters the MBs’ shell elasticity as well as resonance frequency. In this study, we coated the surface of HBMBs with LDOX to create Lip-HBMB complex and subsequently investigated its drug release at different oxygen partial pressures (pO<sub>2</sub>) when exposed to an ultrasound field. Results showed significantly higher drug release at lower oxygen levels, with about 10-times higher release at 5 mmHg pO<sub>2</sub> than 160 mmHg pO<sub>2</sub> at 0.5 W/cm<sup>2</sup> US intensity and 3 MHz frequency. This highlights Lip-HbMBs’ potential for targeted drug delivery to hypoxic tumor regions, marking a significant advancement in focused ultrasound-mediated drug delivery. This study marks the first-ever report of ultrasound-mediated oxygen-sensitive drug uncaging, which holds promise in enhancing FUS specificity and addressing the challenges posed by metastatic cancer.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"675 ","pages":"Article 125521"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325003588","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted drug delivery strategies using focused ultrasound (FUS) are gaining prominence in clinical application. FUS offers deep tissue penetration and precise targeting capabilities. The capabilities of FUS in targeted drug delivery are greatly enhanced by the introduction of ultrasound contrast agents (UCAs – also known as microbubbles). This study introduces a novel hypoxia-targeting drug delivery system using hemoglobin microbubbles (HbMBs) conjugated with doxorubicin-loaded liposomes (LDOX). Previously, we reported that HbMBs exhibit significant acoustic response differences between oxygenated and deoxygenated environments due to hemoglobin’s conformational changes, which alters the MBs’ shell elasticity as well as resonance frequency. In this study, we coated the surface of HBMBs with LDOX to create Lip-HBMB complex and subsequently investigated its drug release at different oxygen partial pressures (pO2) when exposed to an ultrasound field. Results showed significantly higher drug release at lower oxygen levels, with about 10-times higher release at 5 mmHg pO2 than 160 mmHg pO2 at 0.5 W/cm2 US intensity and 3 MHz frequency. This highlights Lip-HbMBs’ potential for targeted drug delivery to hypoxic tumor regions, marking a significant advancement in focused ultrasound-mediated drug delivery. This study marks the first-ever report of ultrasound-mediated oxygen-sensitive drug uncaging, which holds promise in enhancing FUS specificity and addressing the challenges posed by metastatic cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信